On a class of Para-Sakakian manifolds

In the paper, the authors studied conformally symmetric Para-Sasakian manifolds and they proved that an n-dimensional conformally symmetric Para-Sasakian manifold is conformally flat and SP-Sasakian. | Turk J Math 29 (2005) , 249 – 257. ¨ ITAK ˙ c TUB On A Class of Para-Sakakian Manifolds ¨ ur Cihan Ozg¨ Abstract In this study, we investigate Weyl-pseudosymmetric Para-Sasakian manifolds and Para-Sasakian manifolds satisfying the condition C · S = 0. Key Words: Para-Sasakian manifold, Weyl-pseudosymmetric manifold. 1. Introduction Let (M, g) be an n-dimensional, n ≥ 3, differentiable manifold of class C ∞ . We denote by ∇ its Levi-Civita connection. We define endomorphisms R(X, Y ) and X ∧ Y by R(X, Y )Z = [∇X , ∇Y ]Z − ∇[X,Y ] Z, (1) (X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y, (2) respectively, where X, Y, Z ∈ χ(M ), χ(M ) being the Lie algebra of vector fields on M . The Riemannian Christoffel curvature tensor R is defined by R(X, Y, Z, W ) = g(R(X, Y )Z, W ), W ∈ χ(M ). Let S and κ denote the Ricci tensor and the scalar curvature of M , respectively. The Ricci operator S and the (0,2)-tensor S 2 are defined by g(SX, Y ) = S(X, Y ), (3) S 2 (X, Y ) = S(SX, Y ). (4) and 2000 Mathematics Subject Classification: 53B20, 53C15, 53C25 249 ¨ ¨ OZG UR The Weyl conformal curvature operator C is defined by C(X, Y ) = R(X, Y ) − κ 1 (X ∧ SY + SX ∧ Y − X ∧ Y ), n−2 n−1 (5) and the Weyl conformal curvature tensor C is defined by C(X, Y, Z, W ) = g(C(X, Y )Z, W ). If C = 0, n ≥ 4, then M is called conformally flat. For a (0, k)-tensor field T , k ≥ 1, on (M, g) we define the tensors R · T and Q(g, T ) by (R(X, Y ) · T )(X1 ,.,Xk ) = −T (R(X, Y )X1 , X2 ,.,Xk ) (X1 , ., Xk−1, R(X, Y )Xk ), Q(g, T )(X1 ,.,Xk ; X, Y ) = (6) -T ((X ∧ Y )X1 , X2 ,.,Xk ) (X1 ,.,Xk−1 , (X ∧ Y )Xk ), (7) respectively [8]. If the tensors R · C and Q(g, C) are linearly dependent then M is called Weylpseudosymmetric. This is equivalent to R · C = LC Q(g, C), (8) holding on the set UC = {x ∈ M | C 6= 0 at x}, where LC is some function on UC . If R · C = 0 then M is called Weyl-semisymmetric (see [7], [9], [8]). If ∇C = 0 then M is called conformally .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.