Real gromov-witten invariants on the moduli space of genus 0 stable maps to a smooth rational projective space

We characterize transversality, non-transversality properties on the moduli space of genus 0 stable maps to a rational projective surface. If a target space is equipped with a real structure, , anti-holomorphic involution, then the results have real enumerative applications. | Turk J Math 32 (2008) , 155 – 186. ¨ ITAK ˙ c TUB Real Gromov-Witten Invariants on the Moduli Space of Genus 0 Stable Maps to a Smooth Rational Projective Space∗ Seongchun Kwon Abstract We characterize transversality, non-transversality properties on the moduli space of genus 0 stable maps to a rational projective surface. If a target space is equipped with a real structure, , anti-holomorphic involution, then the results have real enumerative applications. Firstly, we can define a real version of Gromov-Witten invariants. Secondly, we can prove the invariance of Welschinger’s invariant in algebraic geometric category. Key Words: Gromov-Witten invariant, enumerative invariant, transversality, intersection multiplicity, real structure. 1. Introduction Let M k (X, β) be the moduli space of stable maps from a k-pointed arithmetic genus 0 curve to X, representing a 2nd homology class β. Let [Υ1 ], . . . , [Υk ] be Poincar´e duals to the homology classes represented by Υ1 , . . . , Υk , where Υ1 , . . . , Υk are pure dimensional varieties in the target space X. The Gromov-Witten invariant on M k (X, β) is defined as: Iβ ([Υ1 ], . . . , [Υk ]) := ev1∗ ([Υ1 ]) ∪ · · · ∪ evk∗ ([Υk ]), M k (X,β) MSC 2000 Mathematics Subject Classification: Primary: 14C17 Secondary: 14C25. ∗ Dedicated to the originator Gang Tian 155 KWON where evi is an i-th evaluation map. The Gromov-Witten invariant Iβ ([Υ1 ], . . . , [Υk ]) may be non-trivial only when codim(Υi ) = dimM k (X, β). We say that the GromovWitten invariant has an enumerative meaning if Iβ ([Υ1 ], . . . , [Υk ]) equals to the actual number of points in ev1−1 (Γ1 )∩· · ·∩evk−1 (Γk ), where Γ1 , . . . , Γk are any pure dimensional varieties in a general position such that [Γi ] = [Υi ], i = 1, . . . , k. So, the GromovWitten invariant counts the number of stable maps whose i-th marked point maps into Γi if it has an enumerative implication. Note that the number of intersection points in ev1−1 (Γ1 ) ∩ · · · ∩ .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
15    22    4    30-11-2024
24    21    1    30-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.