Some properties of e-symmetric rings

In this paper, we first give some characterizations of e-symmetric rings. We prove that R is an e-symmetric ring if and only if a1a2a3 = 0 implies that aσ(1)aσ(2)aσ(3)e = 0, where σ is any transformation of {1, 2, 3}. With the help of the Bott–Duffin inverse. | Turk J Math (2018) 42: 2389 – 2399 © TÜBİTAK doi: Turkish Journal of Mathematics Research Article Some properties of e-symmetric rings Fanyun MENG∗, Junchao WEI, School of Mathematics, Yangzhou University, Yangzhou, . China Received: • Accepted/Published Online: • Final Version: Abstract: In this paper, we first give some characterizations of e -symmetric rings. We prove that R is an e -symmetric ring if and only if a1 a2 a3 = 0 implies that aσ(1) aσ(2) aσ(3) e = 0 , where σ is any transformation of {1, 2, 3} . With the help of the Bott–Duffin inverse, we show that for e ∈ M El (R) , R is an e -symmetric ring if and only if for any a ∈ R and g ∈ E(R) , if a has a Bott–Duffin (e, g) -inverse, then g = eg . Using the solution of the equation axe = c , we show that for e ∈ M El (R) , R is an e -symmetric ring if and only if for any a, c ∈ R , if the equation axe = c has a solution, then c = ec . Next, we study the properties of e -symmetric ∗ -rings. Finally we discuss when the upper triangular matrix ring T2 (R) (resp. T3 (R, I) ) becomes an e -symmetric ring, where e ∈ E(T2 (R)) (resp. e ∈ E(T3 (R, I)) ). Key words: e -Symmetric ring, ∗ -ring, left semicentral, left min-abel ring, Bott–Duffin inverse, upper triangular matrix ring 1. Introduction Throughout this paper, all rings are associative with unity. For a ring R , T2 (R) denotes the 2 × 2 upper triangular matrix ring over R , and E(R) , U (R) , Z(R) , and N (R) denote the set of all idempotents, the set of all invertible elements, the center of R , and the set of all nilpotent elements of R , respectively. An element e ∈ E(R) is called left minimal idempotent of R if Re is a minimal left ideal of R . Write M El (R) to denote the set of all left minimal idempotents of R . An idempotent e of a ring R is called left (right) semicentral ae = eae (ea = eae ) for each a ∈ R . A ring R is called (strongly) left .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.