BRI3 (brain protein I3) is one of the Wnt/β-catenin pathway target genes as indicated by the results of serial analysis of gene expression (SAGE) and microarray analyses performed in our laboratory. | Turkish Journal of Biology Research Article Turk J Biol (2018) 42: 463-470 © TÜBİTAK doi: Identification of IFITM3 and MGAT1 as novel interaction partners of BRI3 by yeast two-hybrid screening İzzet AKİVA , Necla BİRGÜL İYİSON* Department of Molecular Biology and Genetics, Faculty of Arts and Sciences Boğaziçi University, Bebek, İstanbul, Turkey Received: Accepted/Published Online: Final Version: Abstract: BRI3 (brain protein I3) is one of the Wnt/β-catenin pathway target genes as indicated by the results of serial analysis of gene expression (SAGE) and microarray analyses performed in our laboratory. The Wnt/β-catenin signaling pathway is an evolutionarily conserved pathway, which has important functions in early vertebrate development, axis formation, cellular proliferation, and morphogenesis. Previous studies showed that BRI3 expression is upregulated at both mRNA and protein levels upon β-catenin activation by various approaches, such as lithium treatment and overexpression of Wnt ligands in Huh7 (hepatocellular carcinoma) cell lines. Moreover, with regard to the previous literature, BRI3 was found to have a very important role in the TNFα-mediated cell death pathway. In this study, we screened a human liver cDNA library by yeast two-hybrid assay using BRI3 protein as bait, with the aim of finding novel interaction partners of BRI3. Library screening by yeast mating resulted in the identification of three candidate positive clones. Among these, IFITM3 and MGAT1 proteins were confirmed as interaction partners by using cotransformation in yeast cells and coimmunoprecipitation from mammalian cell lines. Considering the poor functional characterization of BRI3 to date, identification of novel BRI3-interacting proteins is an essential first step in determining the action mechanism of BRI3 with respect to the Wnt/β-catenin pathway. Key words: Wnt/β-catenin signaling, .