Identification, characterization, and expression profiling of salt-stress tolerant proton gradient regulator 5 (PGR5) in Gossypium arboreum

Salinity is among the significant abiotic stresses adversely affecting plant development and yield for a wide range of crops. For quantitative and qualitative expression studies of proton gradient regulator 5 (PGR5) under salt stress, differential display RT-PCR and rapid amplification of cDNA ends (RACE) were performed on salt-stress responsive Gossypium arboreum. | Turkish Journal of Biology Turk J Biol (2016) 40: 889-898 © TÜBİTAK doi: Research Article Identification, characterization, and expression profiling of salt-stress tolerant proton gradient regulator 5 (PGR5) in Gossypium arboreum 1, 2 2 2 Muhammad Naveed SHAHID *, Adil JAMAL , Beenish AFTAB , Bahaeldeen Babiker MOHAMED , 1 2 2 2 Javed Iqbal WATTOO , Muhammad Sarfraz KIANI , Bushra RASHID , Tayyab HUSNAIN 1 Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan 2 Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan Received: Accepted/Published Online: Final Version: Abstract: Salinity is among the significant abiotic stresses adversely affecting plant development and yield for a wide range of crops. For quantitative and qualitative expression studies of proton gradient regulator 5 (PGR5) under salt stress, differential display RT-PCR and rapid amplification of cDNA ends (RACE) were performed on salt-stress responsive Gossypium arboreum. Alignment of genomic and cDNA sequences revealed that the GPGR5 gene comprises a single open reading frame of 96 amino acids and contains no introns. Alignment of cotton GPGR5 complete amino acid sequence with PGR5 from other plants revealed the following identities: Gossypium raimondii (97%), Amaranthus hybridus (72%), Vitis vinifera (69%), Medicago truncatula (68%), Cucumis melo (62%), Arabidopsis thaliana (62%), Portulaca oleracea (61%), Portulaca grandiflora (60%), and Zea mays (55%). The expression profile was studied in different plant tissues (stem, leaf, and root) under the abiotic stresses salt, drought, and cold. The results showed a 7-fold increased expression of GPGR5 in leaf tissue in salt stress and almost no induction of transcription in root and stem tissues in salt stress. This gene has a good expression pattern under cold stress compared to salt and

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.