Nhằm phục vụ quá trình học tập cũng như chuẩn bị cho kì thi chọn HSG sắp đến. gửi đến các bạn tài liệu Đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm 2016-2017 có đáp án - Phòng GD&ĐT huyện Nga Sơn. Đây sẽ là tài liệu ôn tập hữu ích, giúp các bạn hệ thống lại kiến thức đã học đồng thời rèn luyện kỹ năng giải đề. . | PHÒNG GIÁO DỤC & ĐÀO TẠO HUYỆN NGA SƠN ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) ĐỀ THI HỌC SINH GIỎI LỚP 6,7,8 THCS CẤP HUYỆN NĂM HỌC: 2016 - 2017 Môn thi: Toán 8 Thời gian làm bài: 150 phút Ngày thi: 04/04/2017 Câu 1: (4 điểm). a 1 2 1 2a 2 4a 1 a3 4a : Cho biểu thức M = 2 a3 1 a 1 4a 2 3a a 1 a) Rút gọn M. b) Tìm a để M > 0. c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Câu 2: ( 5 điểm). 1) Giải các phương trình: x 2 x 4 x 6 x 8 a) . 98 96 94 92 b) x6 - 7x3 - 8 = 0. 2) Tìm m để phương trình sau vô nghiệm: 1 x x 2 2(x m) 2 . x m x m m2 x 2 3) Tìm a, b sao cho f x ax3 bx 2 10x 4 chia hết cho đa thức g x x 2 x 2 . Câu 3: ( 4 điểm). 1) Cho: x + y + z = 1 và x3 + y3 + z3 = 1. Tính A = x2015 + y2015 + z2015 2) Một người dự định đi xe máy từ A đến B với vận tốc 30km/h, nhưng sau khi đi được 1 giờ người ấy nghỉ hết 15 phút, do đó phải tăng vận tốc thêm 10km/h để đến B đúng giờ đã định. Tính quãng đường AB? Câu 4: (5 điểm). Cho hình vuông ABCD có AC cắt BD tại O, M là điểm bất kỳ thuộc cạnh BC (M khác B, C).Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM. a) Chứng minh: ∆OEM vuông cân. b) Chứng minh: ME // BN. c) Từ C kẻ CH BN ( H BN). Chứng minh rằng ba điểm O, M, H thẳng hàng. Câu 5: (2 điểm). Cho các số thực dương a, b, c thỏa mãn a b c 2016 . Tìm giá trị nhỏ nhất của biểu thức: 2a 3b 3c 1 3a 2b 3c 3a 3b 2c 1 P= . 2015 a 2016 b 2017 c Hết Họ và tên thí sinh: Số báo danh: PHÒNG GIÁO DỤC VÀ ĐÀO TẠO NGA SƠN HƯỚNG DẪN CHẤM HỌC SINH GIỎI LỚP 8 Năm học 2016 - 2017 Môn: Toán Nội dung Câu a (2đ) Điều kiện: a 0; a 1 Điểm 0,5 a 1 1 2a 2 4a 1 : a3 4a 2 a3 1 a 1 4a 2 3a a 1 2 Ta có: M = a 1 2 1 2a 2 4a 1 4a .