Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2018-2019 có đáp án

Bộ đề thi học sinh giỏi môn Toán lớp 9 năm 2018-2019 có đáp án là tài liệu ôn thi học sinh giỏi môn Toán hữu ích, thông qua việc luyện tập với đề thi sẽ giúp các em làm quen với các dạng câu hỏi bài tập và rút kinh nghiệm trong quá trình làm bài thi. Mỗi đề thi kèm theo đáp án và hướng dẫn giải chi tiết giúp các bạn dễ dàng hơn trong việc ôn tập cũng như rèn luyện kỹ năng giải đề. Mời các em cùng tham khảo đề thi! | BỘ ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP 9 NĂM 2018-2019 (CÓ ĐÁP ÁN) 1. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Con Cuông 2. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Hà Trung 3. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Hoài Nhơn 4. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT huyện Lai Vung 5. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Tam Dương 6. Đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Thạch Hà 7. Đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT thành phố Buôn Ma Thuột 8. Đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm 2018-2019 có đáp án - Phòng GD&ĐT Hồng Lĩnh 9. Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT GD&ĐT Hà Tĩnh 10. Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT GD&ĐT Hải Dương 11. Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT GD&ĐT Thái Bình PHÒNG GD&ĐT CON CUÔNG KÌ THI CHỌN HSG CẤP HUYỆN LỚP 9 THCS NĂM HỌC: 2018 – 2019 Môn thi: Toán Thời gian làm bài: 150 phút ( không kể thời gian giao đề) Đề chính thức Câu 1(5 điểm): Cho biểu thức A = x 1 2 x 2 5 x với x ≥ 0 và x ≠ 4 4 x x 2 x 2 a) Rút gọn A. b) Tính giá trị của A khi x = 4 . 9 c) Tìm giá trị của x để A có giá trị nguyên. Câu 2 (4điểm): 1. Giải các phương trình sau: a) 4 x 2 4 x 1 2 x 1 b) x 3 4 x 2 x 6 5 x 2. Chứng minh rằng với mọi số nguyên n thì n3 + 3n2 + 2018n chia hết cho 6 Câu 3 (2,5 điểm): Cho đường thẳng (d) có phương trình: (m+1)x + (m-2)y = 3 (d) (m là tham số) a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A (-1; -2) b) Tìm m để (d) cắt 2 trục tọa độ và tạo thành tam giác có diện tích bằng 9 . 2 Câu 4 (7,0 điểm): Cho nửa đường tròn tâm O .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.