Mời các em cùng tham khảo Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2018-2019 có đáp án - Sở GD&ĐT GD&ĐT Thái Bình dưới đây giúp các em dễ dàng hơn trong việc ôn tập và nâng cao kiến thức. Chúc các em đạt kết quả cao trong kì kiểm tra! | SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 THCS NĂM HỌC 2018 - 2019 Môn: TOÁN Thời gian làm bài: 150 phút (không kể thời gian giao đề) Câu 1. (3,0 điểm) x +1 xy + x xy + x x +1 Cho biểu thức = + + 1 : 1 − − P xy + 1 1 − xy 1 1 − + xy xy với x; y ≥ 0 và xy ≠ 1. a. Rút gọn P . b. Tính giá trị của biểu thức P khi x = 3 4 − 2 6 + 3 4 + 2 6 và = y x2 + 6 . Câu 2. (3,0 điểm) 3m – 4 Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng (d): ( m – 1) x + y = = 300 . m . Tìm m để (d ) cắt (d’) tại điểm M sao cho MOx và (d’): x + ( m – 1) y = Câu 3. (4,0 điểm) a. Giải phương trình: 3 x + 1 − 6 − x + 3 x 2 − 14 x − 8 = 0 x 3 − 2 x 2 + 2 x + 2 y + x 2 y − 4 = 0 b. Giải hệ phương trình: 2 1 3x − y + 7 x − xy − 4 x −= Câu 4. (2,0 điểm) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có chu vi bằng 3 thì 3a 2 + 3b 2 + 3c 2 + 4abc ≥ 13 . Câu 5. (3,0 điểm) Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC. a. Chứng minh: nếu HG//BC thì tan C = 3. b. Chứng minh: tan C = tan A + tan B + tan C . Câu 6. (3,0 điểm) Cho tam giác ABC vuông tại A, đường cao AH, gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các đường thẳng AJ, AK với cạnh BC lần lượt là E và F. a. Chứng minh: I là tâm đường tròn ngoại tiếp tam giác AEF. b. Chứng minh: đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. Câu 7. (2,0 điểm) Tìm tất cả các bộ số nguyên dương ( x; y; z ) sao cho x + y 2019 là số hữu tỉ và x 2 + y 2 + z 2 y + z 2019 là số nguyên tố. HẾT Họ và tên thí sinh:. Số báo danh: SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH Câu ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9 THCS NĂM HỌC 2018-2019 HƯỚNG DẪN CHẤM, ĐÁP ÁN VÀ BIỂU ĐIỂM