Trong bài báo này, chúng tôi trình bày kết quả thực nghiệm về các khó khăn của sinh viên của ba trường: Đại học Sư phạm Thành phố Hồ Chí Minh, Đại học Sài Gòn và Đại học Đồng Nai khi giải quyết kiểu nhiệm vụ xét tính đóng, mở của một tập trong không gian mêtric. Các khó khăn này sinh ra bởi chướng ngại tri thức luận gắn liền với việc xây dựng khái niệm tập mở, tập đóng. | TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH HO CHI MINH CITY UNIVERSITY OF EDUCATION TẠP CHÍ KHOA HỌC JOURNAL OF SCIENCE KHOA HỌC GIÁO DỤC EDUCATION SCIENCE ISSN: 1859-3100 Tập 16, Số 1 (2019): 73-84 Vol. 16, No. 1 (2019): 73-84 Email: tapchikhoahoc@; Website: MỘT NGHIÊN CỨU THỰC NGHIỆM VỀ CÁC KHÓ KHĂN LIÊN QUAN ĐẾN VIỆC HỌC KHÁI NIỆM TẬP MỞ, TẬP ĐÓNG TRONG KHÔNG GIAN MÊTRIC Nguyễn Ái Quốc, Lê Minh Tuấn Trường Đại học Sài Gòn Tác giả liên hệ: Email: nguyenaq2014@ Ngày nhận bài: 14-5-2018; ngày nhận bài sửa: 12-7-2018; ngày duyệt đăng: 17-01-2019 TÓM TẮT Trong bài báo này, chúng tôi trình bày kết quả thực nghiệm về các khó khăn của sinh viên của ba trường: Đại học Sư phạm Thành phố Hồ Chí Minh, Đại học Sài Gòn và Đại học Đồng Nai khi giải quyết kiểu nhiệm vụ xét tính đóng, mở của một tập trong không gian mêtric. Các khó khăn này sinh ra bởi chướng ngại tri thức luận gắn liền với việc xây dựng khái niệm tập mở, tập đóng như quá trình khái quát hóa khoảng mở, đóng của và bởi ảnh hưởng của mối quan hệ thể chế Toán đại học đối với tập mở và tập đóng. Từ khóa: chướng ngại tri thức luận, khó khăn, không gian mêtric, tập đóng, tập mở. 1. Mở đầu . Định nghĩa tập mở, tập đóng trong ba thể chế Toán đại học Tập mở, tập đóng là hai khái niệm cơ bản của không gian mêtric và không gian tôpô. Hai khái niệm này được tiếp cận bằng ba cách khác nhau trong thể chế Toán đại học của ba trường Đại học Sư phạm Thành phố Hồ Chí Minh (ĐHSPTPHCM), Đại học Sài Gòn (ĐHSG) và Đại học Đồng Nai (ĐHĐN). Thể chế Toán của Đại học Sư phạm Thành phố Hồ Chí Minh Trong thể chế Toán của ĐHSPTPHCM, khái niệm tập mở và tập đóng chỉ xuất hiện trong giáo trình Tôpô đại cương và được định nghĩa theo lân cận: “Một tập hợp con U của được gọi là mở nếu với mỗi x U, tồn tại một số thực dương sao cho O (x) U.” (Trần Tráng, 2005, tr. 44) “Một tập hợp con của được gọi là đóng nếu nó là phần bù của một tập hợp con mở trong .” (Trần Tráng, 2005, tr. 48) Thể