Với Đề thi chọn HSG lớp 9 THCS môn Toán năm học 2016 - 2017 - Sở GD&ĐT Bến Tre dưới đây sẽ giúp các bạn học sinh ôn tập củng cố lại kiến thức và kỹ năng giải bài tập để chuẩn bị cho kỳ thi sắp tới đạt được kết quả mong muốn. Mời các bạn tham khảo. | SỞ GIÁO DỤC VÀ ĐÀO TẠO BẾN TRE ĐỀ CHÍNH THỨC ĐỀ THI HỌC SIN GIỎI LỚP 9 THCS NĂM HỌC 2016-2017 Môn: TOÁN Thời gian: 150 phút (không kể phát đề) Câu 1. (7 điểm) a) Chứng minh rằng A n8 4n7 6n6 4n5 n4 chia hết cho 16 với mọi n là số nguyên b) Cho biểu thức B x 2 2 3 12x 2 x 2 x 2 2 8x . Rút gọn biểu thức B và tìm các giá trị nguyên của x để B có giá trị nguyên c) Tìm tất cả các nghiệm nguyên của phương trình: 2y2x x y 1 x2 2y2 xy Câu 2 (3 điểm) Cho hàm số y 2 x2 6x 9 x 2 có đồ thị (D) a) Vẽ đồ thị (D) của hàm số trên b) Với giá trị nào của m thì phương trình 2 x2 6x 9 x 2 m vô nghiệm c) Dựa vào đồ thị (D), tìm tập nghiệm của bất phương trình: 2 x2 6x 9 x Câu 3. (2 điểm) 2 y2 x xy 2017 (1) 3 y2 Cho x, y, z là các số thực thỏa: z 2 1009 (2) (x 0, z 0,x z) 3 2 x xz z 2 1008 (3) 2z y z Chứng minh rằng x x z Câu 4. (5 điểm) Cho đoạn thẳng AB và điểm E nằm giữa điểm A và điểm B sao cho AE 2 x 3 x +) Nếu 0