Đề thi chọn HSG lớp 9 cấp tỉnh môn Toán năm 2009 - 2010 - Sở GD&ĐT Nghệ An giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập và đặc biệt khi giải những bài tập cần phải tính toán một cách nhanh nhất, thuận lợi nhất đồng thời đáp ứng cho kỳ thi tuyển HSG lớp 9 cấp tỉnh. | SỞ GD&ĐT NGHỆ AN Đề chính thức KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 NĂM HỌC 2009 – 2010 Môn thi: TOÁN LỚP 9 - BẢNG A Thời gian làm bài: 150 phút Câu 1. (4,5 điểm): a) Cho hàm số f (x) (x 3 12x 31)2010 Tính f (a) tại a 3 16 8 5 3 16 8 5 b) Tìm các nghiệm nguyên của phương trình: 5(x 2 xy y2 ) 7(x 2y) Câu 2. (4,5 điểm): 2 3 2 2 a) Giải phương trình: x x x x x 1 1 1 x y z 2 b) Giải hệ phương trình: 2 1 4 xy z 2 Câu 3. (3,0 điểm): Cho x; y; z là các số thực dương thoả mãn: xyz = 1 Tìm giá trị lớn nhất của biểu thức: 1 1 1 A 3 x y3 1 y3 z 3 1 z 3 x 3 1 Câu 4. (5,5 điểm): Cho hai đường tròn (O; R) và (O'; R') cắt nhau tại hai điểm phân biệt A và B. Từ một điểm C thay đổi trên tia đối của tia AB. Vẽ các tiếp tuyến CD; CE với đường tròn tâm O (D; E là các tiếp điểm và E nằm trong đường tròn tâm O'). Hai đường thẳng AD và AE cắt đường tròn tâm O' lần lượt tại M và N (M và N khác với điểm A). Đường thẳng DE cắt MN tại I. Chứng minh rằng: a) b) Khi điểm C thay đổi thì đường thẳng DE luôn đi qua một điểm cố định. Câu 5. (2,5 điểm): Cho tam giác ABC vuông cân tại A, trung tuyến AD. Điểm M di động trên đoạn AD. Gọi N và P lần lượt là hình chiếu của điểm M trên AB và AC. Vẽ NH PD tại H. Xác định vị trí của điểm M để tam giác AHB có diện tích lớn nhất. - - - Hết - - - Họ và tên thí sinh: Số báo danh: SỞ GD&ĐT NGHỆ AN KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS NĂM HỌC 2009 – 2010 HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM ĐỀ CHÍNH THỨC (Hướng dẫn và biểu điểm chấm gồm 04 trang ) Môn: TOÁN - BẢNG A Câu Nội dung Ý Điểm a 3 16 8 5 3 16 8 5 a3 32 3 3 (16 8 5)(16 8 5).( 3 16 8 5 3 16 8 5 ) a) a 32 3.( 4).a (2,0đ) a3 32 12a 3 a3 12a 32 0 a3 12a 31 1 f (a) 12010 1 (1) 5( x2 xy y 2 ) 7( x 2 y) 7( x 2 y) 5 ( x 2 y) .