Luận văn sẽ trình bày về lý thuyết mạng neural RNN và cải tiến của nó là LSTM cùng với một số thuật toán học máy quan trọng trong quá trình xử lý dữ liệu ngôn ngữ. Cuối cùng, luận văn sẽ mô tả việc áp dụng và kết quả khi sử dụng mô hình LSTM trong bài toán trích xuất thông tin quan điểm. Thuật toán sẽ được đánh giá dựa trên hai tập dữ liệu tiếng Anh và tiếng Việt. | ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC CÔNG NGHỆ PHẠM HÙNG HƢỚNG TIẾP CẬN DỰA TRÊN HỌC MÁY CHO BÀI TOÁN TRÍCH XUẤT THÔNG TIN QUAN ĐIỂM Ngành: Công nghệ thông tin Chuyên ngành: Kỹ thuật phần mềm Mã số: 60480103 LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN NGƢỜI HƢỚNG DẪN KHOA HỌC: TS. NGUYỄN VĂN VINH HÀ NỘI - 2017 1 LỜI CAM ĐOAN Tôi là Phạm Hùng, học viên lớp Kỹ Thuật Phần Mềm K21 xin cam đoan báo cáo luận văn này đƣợc viết bởi tôi dƣới sự hƣớng dẫn của thầy giáo, tiến sĩ Nguyễn Văn Vinh. Tất cả các kết quả đạt đƣợc trong luận văn này là quá trình tìm hiểu, nghiên cứu của riêng tôi. Trong toàn bộ nội dung của luận văn, những điều đƣợc trình bày là kết quả của cá nhân tôi hoặc là đƣợc tổng hợp từ nhiều nguồn tài liệu khác. Các tài liệu tham khảo đều có xuất xứ rõ ràng và đƣợc trích dẫn hợp pháp. Tôi xin hoàn toàn chịu trách nhiệm và chịu mọi hình thức kỷ luật theo quy định cho lời cam đoan của mình. Hà Nội, ngày tháng năm 2017 Ngƣời cam đoan Phạm Hùng 2 MỤC LỤC MỤC LỤC . 2 TÓM TẮT NỘI DUNG . 5 MỞ ĐẦU . 6 CHƢƠNG 1: TỔNG QUAN VỀ BÀI TOÁN . 7 Khái niệm quan điểm. 7 Bài toán trích xuất thông tin quan điểm 7 Các hƣớng tiếp cận và giải quyết bài toán. 7 Mô hình Support Vector Machine 7 K-nearest neighbors .