Improved PCA method for sensor fault detection and isolation in a nuclear power plant

An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of T2 and Q statistics. | Improved PCA method for sensor fault detection and isolation in a nuclear power plant

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.