Xác định trình tự hồi qui trong việc dự báo hệ thống dữ liệu đa chiều

Bài báo này xây dựng một giải pháp để xác định trình tự hồi qui trong việc dự báo hệ thống dữ liệu đa chiều bằng phương pháp phân tích thành phần chính. Phần ứng dụng dựa vào dữ liệu trên trang Web của Tổng cục Thống kê. Kết quả cho thấy, việc sử dụng phương pháp phân tích thành phần chính đã đưa ra trình tự hồi qui chính xác, góp phần nâng cao hiệu quả của dự báo. | Xác định trình tự hồi qui trong việc dự báo hệ thống dữ liệu đa chiều Nghiên cứu khoa học công nghệ XÁC ĐỊNH TRÌNH TỰ HỒI QUI TRONG VIỆC DỰ BÁO HỆ THỐNG DỮ LIỆU ĐA CHIỀU Hà Gia Sơn* Tóm tắt: Bài báo này xây dựng một giải pháp để xác định trình tự hồi qui trong việc dự báo hệ thống dữ liệu đa chiều bằng phương pháp phân tích thành phần chính. Phần ứng dụng dựa vào dữ liệu trên trang Web của Tổng cục Thống kê. Kết quả cho thấy, việc sử dụng phương pháp phân tích thành phần chính đã đưa ra trình tự hồi qui chính xác, góp phần nâng cao hiệu quả của dự báo. Từ khóa: Dự báo, Chuỗi thời gian, Dữ liệu đa chiều, Phân tích thành phần chính. 1. ĐẶT VẤN ĐỀ “Dự báo là dự kiến, tiên đoán về những sự kiện, hiện tượng, trạng thái nào đó có thể hay nhất định sẽ xảy ra trong tương lai.” (từ điển Bách khoa). Ở nước ngoài, có nhiều công trình nghiên cứu về vấn đề này, đã có một hệ thống lý thuyết gồm nhiều phương pháp, qui trình cũng như nhiều mô hình để dự báo tương lai như tài liệu [10]. Tài liệu [8] đã phân tích và thăm dò các yếu tố của chuỗi thời gian, các mô hình của chuỗi thời gian, quy trình Box-Jenkins dành để dự báo. Tài liệu [9] nêu tổng quan về các phương pháp dự báo trong kinh doanh. Trong thời gian gần đây, ở trong nước, chúng ta đã quan tâm nhiều hơn tới lĩnh vực dự báo, đã có nhiều đề tài các cấp, với những mục đích và cách tiếp cận khác nhau về dự báo như các công trình [1-5], [7]. Hiện tại, xuất hiện nhiều mô hình dự báo có hiệu quả cao, tuy nhiên, mọi sự vật và hiện tượng đều không xuất hiện hay biến đổi đơn độc mà còn chịu tác động của những sự việc, hiện tượng khác, chúng phụ thuộc và ảnh hưởng lẫn nhau. Tổng hợp các công trình nghiên cứu cho thấy, khi dự báo những bộ dữ liệu thu thập được tập hợp thành một bảng lớn (dữ liệu đa chiều), người ta thường dùng mô hình phân tích hồi quy tuyến tính để phân tích quan hệ giữa biến phụ thuộc Y với một hay nhiều biến độc lập X để tìm sự liên quan giữa các cột (biến) của .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.