Dự đoán xu thế chỉ số chứng khoán Việt Nam sử dụng phân tích hồi quy quá trình Gauss và mô hình tự hồi quy trung bình động

Bài viết trình bày phương pháp dự đoán xu thế chỉ số chứng khoán Việt Nam (VN-Index) gồm bốn bước, trong đó dữ liệu đầu vào là chuỗi thời gian chứa lịch sử chỉ số giá của VN-Index. Các tác giả thực hiện phân tách dữ liệu đầu vào thành các chuỗi thời gian thành phần bao gồm: Xu thế, thời vụ và ngẫu nhiên. | Dự đoán xu thế chỉ số chứng khoán Việt Nam sử dụng phân tích hồi quy quá trình Gauss và mô hình tự hồi quy trung bình động Các công trình nghiên cứu phát triển Công nghệ Thông tin và Truyền thông Dự đoán xu thế chỉ số chứng khoán Việt Nam sử dụng phân tích hồi quy quá trình Gauss và mô hình tự hồi quy trung bình động Huỳnh Quyết Thắng, Phùng Đình Vũ, Tống Văn Vinh Trường Đại học Bách khoa Hà Nội Tác giả liên hệ: Huỳnh Quyết Thắng, thanghq@ Ngày nhận bài: 28/08/2017, ngày sửa chữa: 26/10/2018, ngày duyệt đăng: 01/11/2018 Xem sớm trực tuyến: 08/11/2018, định danh DOI: Biên tập lĩnh vực điều phối phản biện và quyết định nhận đăng: TS. Trịnh Quốc Anh Tóm tắt: Trong bài báo, chúng tôi trình bày phương pháp dự đoán xu thế chỉ số chứng khoán Việt Nam (VN-Index) gồm bốn bước, trong đó dữ liệu đầu vào là chuỗi thời gian chứa lịch sử chỉ số giá của VN-Index. Các tác giả thực hiện phân tách dữ liệu đầu vào thành các chuỗi thời gian thành phần bao gồm: xu thế, thời vụ và ngẫu nhiên. Chúng tôi áp dụng mô hình tự hồi quy trung bình động (ARMA: Autoregressive moving average) để dự đoán thành phần thời gian ngẫu nhiên ở một bước kế tiếp, phân tích hồi quy quá trình Gauss (GPR: Gaussian process regression) để dự đoán thành phần thời gian xu thế. Cuối cùng, kết quả dự đoán các thành phần riêng lẻ được tổng hợp lại để đưa ra kết quả dự đoán cuối cùng cho phương pháp kết hợp GPR-ARMA. Trong bài báo cũng trình bày các kết quả cài đặt thử nghiệm và phân tích hiệu quả của phương pháp được đề xuất. Từ khóa: Dự đoán xu thế VN-Index; Mô hình chuỗi thời gian; Hồi quy Gauss; Mô hình tự hồi quy trung bình động; Phương pháp kết hợp hồi quy Gauss và mô hình tự hồi quy trung bình động. Title: Vietnam Stock Index Trend Prediction using Gaussian Process Regression and Autoregressive Moving Average Model Abstract: In this paper, we present a four-step method to predict the trend of Vietnam Stock Index .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.