Trong nghiên cứu này các phương trình dự báo số lượng xoáy thuận nhiệt đới (XTNĐ) hạn 6 tháng trên khu vực Biển Đông (VES) đã được xây dựng và thử nghiệm. Ba mô hình hồi quy tuyến tính đa biến trong đó các hệ số hồi quy được xác định bằng các phương pháp khác nhau, gồm 1) bình phương tối thiểu (MLR), 2) độ lệch tuyệt đối nhỏ nhất (LAD), 3) minmax (LMV), và mô hình mạng thần kinh nhân tạo (ANN) cộng với một số tổ hợp các mô hình trên với nhau được sử dụng. | Dự báo hạn mùa số lượng xoáy thuận nhiệt đới trên Biển Đông bằng các mô hình thống kê VNU Journal of Science: Earth and Environmental Sciences, Vol. 35, No. 2 (2019) 45-57 Original Article Seasonal Predictions of the Number of Tropical Cyclones in the Vietnam East Sea Using Statistical Models Dinh Ba Duy1, Ngo Duc Thanh2, Tran Quang Duc3, Phan Van Tan3,* 1 Vietnam-Russia Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam 2 University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam 3 VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam Received 04 April 2019 Revised 19 April 2019; Accepted 19 May 2019 Abstract: In this study, the equations for estimating the number of tropical cyclones (TCs) at a 6- month lead-time in the Vietnam East Sea (VES) have been developed and tested. Three multivariate linear regression models in which regression coefficients were determined by different methods, including 1) method of least squares (MLR), 2) minimum absolute deviation method (LAD), 3) minimax method (LMV). The artificial neural network model (ANN) and some combinations of the above regression models were also used. The VES was divided into the northern region above 15ºN (VES_N15) and the southern one below that latitude (VES_S15). The number of TCs was calculated from the data of the Japan Regional Specialized Meteorological Center (RMSC) for the period 1981- 2017. Principal components of the 14 climate indicators were selected as predictors. Results for the training period showed that the ANN model performed best in all 12 times of forecasts, following by the ANN-MLR combination. The poorest result was obtained with the LMV model. Results for the independent dataset showed that the number of adequate forecasts based on the MSSS scores decreased sharply compared to the training period .