Với hơn 40 bài toán phương trình, hệ phương trình với các cách giải khác nhau sẽ giúp các bạn có phương pháp giải phương trình nhanh chóng và dễ dàng. Cùng tham khảo tài liệu để cùng rèn luyện giải toán phương trình hiệu quả nhé. | Bài giảng Tuyển chọn phương trình và hệ phương trình ^ _ ` e NGUYỄN XUÂN HIẾU a e a e a e a e a e a e a e a e a e TUYỂN CHỌN PT VÀ HPT a e a e a e a e a e a e a e a e a e Hà Tĩnh - 2016 a e a d ccccccccccccc b TUYỂN CHỌN PT VÀ HPT ẾU Bài 1. Giải phương trình: √ √ 32x2 + 8x + 4 2 2x2 + x + 2x − 1 = 4x2 + 7 HI (Sáng tác: Thầy Khoa Trần) LỜI GIẢI ÂN 1 Đk: x > 2 √ 14x + 3 Ta có: 2 2x2 + x > (1) 5 Thật vậy: (1) ⇔ (2x − 1)(2x + 9) > 0 Vậy đánh giá trên là đánh giá đúng !!! Khi đó: XU √ √ 20x2 − 34 2x − 1 + 35 + (28x2 − 60x + 33) 2x − 1 √ VT −VP > 2x − 1 5(4x2 + 7) √ 20x2 − 34x + 35 + (28x2 − 60x + 33) 2x − 1 √ > 2x − 1 > 0 5(4x2 + 7) √ (AM − GM : 2x − 1 6 x) 1 N ⇒ V T > V P , Dấu "=" xảy ra ⇔ x = 2 Thử lại thấy thỏa mãn !!!! 1 Vậy phương trình đã cho có 1 nghiệm x = Ễ 2 E F Bài 2. Giải hệ phương trình: UY 15 08 r + √ = 98 (1) 2y − 1 35 x− 36 2 + xy(1 + x) = 2√xy(1 + √x) (2) (Sáng tác: Thám Tử Cô Nan nhân dịp tết trung thu 2016) NG H G LỜI GIẢI Nguyễn Xuân Hiếu 1 ĐẲNG CẤP LÀ HIẾUPRỒ K42 Trường THPT Cẩm Bình - Hà Tĩnh ẾU x > 35 Đk: 36 1 y> 2 √ √ (2) ⇔ ( xy − 1)2 + (x y − 1)2 = 0 ( HI x=1 ⇔ y=1 Thử lại vào (1) thấy thỏa mãn Vậy HPT đã cho có 1 nghiệm (x; y) = (1; 1) abb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbc ÂN d Bài 3. Giải hệ phương trình: e d e d e ( √ d e p ( x + 1 + x)(y − y 2 − 1) = 1 2 d e (1) √ d e p √ ( x2 + 1 + y 2 − 1)2 + 8 y − x + 14 = 17 d e (2) d e d (Sưu tầm bởi: Mạnh Trần)e d e XU d e fgg ggg ggg ggg ggg ggg ggg ggg ggg ggg ggg ggg ggg ggh LỜI GIẢI " y>1 Đk: y 6 −1 (∗) N y − x + 14 > 0 √ p (1) ⇔ x + x2 + 1 = y + y 2 − 1 (3) Ta có: V T (3) > x + |x| > 0 Ễ p ⇒ V P (3) > 0 ⇔ y + y 2 − 1 > 0 ⇒ y > 0 Kết hợp với điều kiện (∗) ⇒