Đề thi được biên soạn nhằm đánh giá khả năng giải Toán trên máy tính của các em học sinh lớp 8. Đây là tài liệu tham khảo hữu ích cho các bạn học sinh và giáo viên trong quá trình giảng dạy và học tập. đề thi để nắm chi tiết nội dung. | Đề thi giao lưu học sinh giỏi giải Toán trên Máy tinh cầm tay lớp 8 năm học 2014-2015 UBND HUYỆN TAM KÌ THI GIAO LƯU HSG GIẢI TOÁN DƯƠNG TRÊN MTCT LỚP 8 NĂM HỌC 20142015 PHÒNG GD&ĐT Thời gian thi: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Chú ý: Đề thi này có: 04 trang Thí sinh làm bài trực tiếp vào bản đề thi này. Họ và tên, chữ ký SỐ PHÁCH Điểm của toàn bài thi các giám khảo (Do Chủ tịch HĐ chấm ghi ) Bằng số Bằng chữ Câu 1: (2 điểm) Cho các số thập phân vô hạn tuần hoàn: E1 = 0,29972997. ; E2 = 0,029972997. ;E3 = 0,0029972997. với chu kỳ (2997) 3 3 3 Chứng minh rằng T = E + E + E là số tự nhiên. 1 2 3 Tóm tắt cách làm: Kết quả: T= Câu 2: (2 điểm) Tìm chữ số thập phân thứ 132011 sau dấu phẩy trong phép chia 250000 cho 19. Đáp số : + Kết quả của phép chia 250 000 cho 19 là: + Chữ số thập phân thứ 132011 sau dấu phẩy trong phép chia 250000 cho 19 : Câu 3: (2 điểm) Cho a = 546748605 và b = 437549310. Tìm ƯCLN(a;b); BCNN(a,b). 1 Đáp số: ƯCLN(a;b)= ;BCNN(a,b)= Câu 4: (2 điểm) Một người lương khởi điểm 2 000 000 đồng/tháng, cứ sau 3 năm lại được tăng thêm 9,8%. Hỏi sang năm thứ 10 lương người đó là bao nhiêu đồng/tháng? Tóm tắt cách giải: Kết quả: (lấy đến hàng đơn vị) Câu 5: (4 điểm) 1 9 1 7 13 5 82 3 32 Cho đa thức Q( x) = x − x + x − x + x. 630 21 30 63 35 a/ Tìm số dư khi chia đa thức Q( x) cho x − 4 . b/ Tính giá trị của đa thức khi x = −4; −3; −2; −1;0 . c/ Chứng minh rằng đa thức Q( x) nhận giá trị nguyên với mọi x nguyên. a/ Tóm tắt cách giải: Kết quả: b/ Kết quả: Q( −4) = ; Q( −3) = ; Q( −2) = ; Q( −1) = ; Q(0) .