Lecture Networking theory & fundamentals - Chapter 2

The following will be discussed in this chapter: Delay in packet networks, introduction to queueing theory, review of probability theory, the poisson process, little’s theorem, proof and intuitive explanation. | Lecture Networking theory & fundamentals - Chapter 2 TCOM 501: Networking Theory & Fundamentals Lecture 2 January 22, 2003 Prof. Yannis A. Korilis 1 2-2 Topics Delay in Packet Networks Introduction to Queueing Theory Review of Probability Theory The Poisson Process Little’s Theorem Proof and Intuitive Explanation Applications 2-3 Sources of Network Delay Processing Delay Assume processing power is not a constraint Queueing Delay Time buffered waiting for transmission Transmission Delay Propagation Delay Time spend on the link – transmission of electrical signal Independent of traffic carried by the link Focus: Queueing & Transmission Delay 2-4 Basic Queueing Model Buffer Server(s) Arrivals Departures Queued In Service A queue models any service station with: One or multiple servers A waiting area or buffer Customers arrive to receive service A customer that upon arrival does not find a free server is waits in the buffer 2-5 Characteristics of a Queue b m Number of servers m: one, multiple, infinite Buffer size b Service discipline (scheduling): FCFS, LCFS, Processor Sharing (PS), etc Arrival process Service statistics 2-6 Arrival Process n +1 n n −1 τn tn t τ n : interarrival time between customers n and n+1 τ n is a random variable {τ n , n ≥ 1} is a stochastic process Interarrival times are identically distributed and have a common mean E[τ n ] = E [τ ] = 1/ λ λ is called the arrival rate 2-7 Service-Time Process n +1 n n −1 sn t sn : service time of customer n at the server { s n , n ≥ 1} is a stochastic process Service times are identically distributed with common mean E [ sn ] = E [ s ] = µ µ is called the service rate For packets, are the service times really random? 2-8 Queue Descriptors Generic descriptor: A/S/m/k A denotes the arrival process For Poisson arrivals we use M (for Markovian) B denotes the service-time distribution M: .

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.