Bài viết trình bày việc xây dựng khái niệm giới hạn riêng của mảng kép các số thực và chứng minh giới hạn dưới và giới hạn trên của mảng kép các số thực định nghĩa trong bài viết tương ứng là giới hạn riêng bé nhất và lớn nhất. | Luật mạnh số lớn đối với mảng kép các biến ngẫu nhiên ứng với hàm tiềm năng Trường Đại học Vinh Tạp chí khoa học, Tập 48, Số 1A (2019), tr. 33-39 LUẬT MẠNH SỐ LỚN ĐỐI VỚI MẢNG KÉP CÁC BIẾN NGẪU NHIÊN ỨNG VỚI HÀM TIỀM NĂNG Dương Xuân Giáp (1) , Ngô Hà Châu Loan (2) 1 Viện Sư phạm Tự nhiên, Trường Đại học Vinh 2 Khoa Cơ sở, Trường Đại học kinh tế Nghệ An Ngày nhận bài 3/4/2019, ngày nhận đăng 6/5/2019 Tóm tắt: Trong bài báo này, chúng tôi xây dựng khái niệm giới hạn riêng của mảng kép các số thực và chứng minh giới hạn dưới và giới hạn trên của mảng kép các số thực định nghĩa trong bài báo [3] tương ứng là giới hạn riêng bé nhất và lớn nhất. Từ đó, chúng tôi ứng dụng để thiết lập luật mạnh số lớn đối với mảng kép các biến ngẫu nhiên ứng với hàm tiềm năng. Kết quả này mở rộng kết quả của F. Maccheroni và M. Marinacci đăng trên tạp chí The Annals of Probability năm 2005 từ trường hợp dãy sang trường hợp mảng kép. 1 Mở đầu Ta bắt gặp trong thực tiễn những không gian đo với độ đo không có tính cộng tính (xem các tài liệu [2], [5], [8]). Từ đó, khái niệm không gian đo với hàm tiềm năng (capacity) được giới thiệu và được rất nhiều nhà toán học trong và ngoài nước quan tâm nghiên cứu. Một trong những hướng nghiên cứu đối với lớp không gian này là các định lý giới hạn và ứng dụng của chúng. Năm 1999, M. Marinacci [7] thiết lập luật số lớn cho hàm tiềm năng (capacity) đối với dãy các biến ngẫu nhiên độc lập cùng phân phối và mô hình hóa cho lý thuyết quyết định kinh tế (bài báo được đăng trên tạp chí Journal of Economic Theory). Sau đó, năm 2005, F. Maccheroni và M. Marinacci [6] mở rộng kết quả trên cho dãy các biến ngẫu nhiên độc lập đôi một cùng phân phối và một số giả thiết khác đối với hàm tiềm năng (bài báo được đăng trên tạp chí The Annals of Probability). Đến năm 2014, P. Terán thiết lập luật số lớn cho hàm tiềm năng đối với dãy các biến ngẫu nhiên độc lập đôi một cùng phân phối với một số giả thiết yếu hơn .