Đề thi học sinh giỏi môn Toán lớp 9 năm 2010-2011 (Đề chính thức) - Sở Giáo dục và Đào tạo thành phố Đà Nẵng

Đây là tài liệu tham khảo dành cho giáo viên và học sinh, phục vụ công tác giảng dạy và học tập môn Toán lớp 9. Để nắm chi tiết nội dung các bài tập, đề thi. | Đề thi học sinh giỏi môn Toán lớp 9 năm 2010-2011 (Đề chính thức) - Sở Giáo dục và Đào tạo thành phố Đà Nẵng SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 THÀNH PHỐ ĐÀ NẴNG NĂM HỌC 2010­2011 ĐỀ CHÍNH THỨC Môn thi: TOÁN Thời gian: 150 phút (không tính thời gian giao đề) Bài 1. (2,0 điểm) a +1 a a −1 a2 − a a + a −1 Cho biểu thức: M = + + với a > 0, a 1. a a− a a −a a a) Chứng minh rằng M > 4. 6 b) Với những giá trị nào của a thì biểu thức N = nhận giá trị nguyên? M Bài 2. (2,0 điểm) a) Cho các hàm số bậc nhất: y = 0,5x + 3 , y = 6 − x và y = mx có đồ thị lần lượt là các đường thẳng (d1), (d2) và ( m). Với những giá trị nào của tham số m thì đường thẳng ( m) cắt hai đường thẳng (d1) và (d2) lần lượt tại hai điểm A và B sao cho điểm A có hoành độ âm còn điểm B có hoành độ dương? b) Trên mặt phẳng tọa độ Oxy, cho M và N là hai điểm phân biệt, di động lần lượt trên trục hoành và trên trục tung sao cho đường thẳng MN luôn đi qua điểm cố định I(1 ; 2) . Tìm hệ thức liên hệ giữa hoành độ của M và tung độ của 1 1 . N; từ đó, suy ra giá trị nhỏ nhất của biểu thức Q = + OM 2 ON 2 Bài 3. (2,0 điểm) 17x + 2y = 2011 xy a) Giải hệ phương trình: x − 2y = 3xy. b) Tìm tất cả các giá trị của x, y, z sao cho: 1 x + y − z + z − x = (y + 3). 2 Bài 4. (3,0 điểm) Cho đường tròn (C) với tâm O và đường kính AB cố định. Gọi M là điểm di động trên (C) sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng của O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N. Đường thẳng BN cắt đường tròn (C ) tại điểm thứ hai là E. Các đường thẳng BM và CN cắt nhau tại F. a) Chứng minh rằng các điểm A, E, F thẳng hàng. b) Chứng minh rằng tích AM AN không đổi. c) Chứng minh rằng A là trọng tâm của tam giác BNF khi và chỉ khi NF ngắn nhất. Bài 5. (1,0 điểm) .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.