Bài giảng "Giải tích hàm nhiều biến - Chương 2: Tích phân bội" cung cấp cho người học các kiến thức: Một số mặt bậc hai thường gặp, tích phân kép, tích phân bội ba. nội dung chi tiết. | Bài giảng Giải tích hàm nhiều biến: Chương 2 - Nguyễn Thị Xuân Anh CHƯƠNG II: TÍCH PHÂN BỘI §0: MỘT SỐ MẶT BẬC HAI THƯỜNG GẶP §1: TÍCH PHÂN KÉP I. Định nghĩa và Cách tính II. Đổi biến trong tích phân kép III. Ứng dụng hình học của tích phân kép §2: TÍCH PHÂN BỘI BA I. Định nghĩa và Cách tính II. Đổi biến trong tích phân bội ba III. Ứng dụng hình học của tích phân bội ba §0. Một số mặt bậc hai thường gặp I. Mặt Ellipsoid: x 2 y 2 z2 1. Phương trình: 2 2 2 1 a b c 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0, z = 0 ta đều nhận được giao tuyến của mặt với 3 mặt tọa độ làcác đường Ellipse. Tức là nếu cả 3 giao tuyến của mặt S với 3 mặt tọa độ hoặc các mặt song song với các mặt tọa độ đều là ellipse thì ta sẽ gọi mặt S là mặt Ellipsoid 3. Cách vẽ hình Vẽ 3 giao tuyến của S với 3 mặt tọa độ §0. Một số mặt bậc hai thường gặp x2 y2 Vẽ đường 2 2 1 trên mặt phẳng nằm ellipse a b ngang z = 0 §0. Một số mặt bậc hai thường gặp y2 z2 trên mặt phẳng Vẽ thêm đường ellipse 1 b2 c2 x=0 §0. Một số mặt bậc hai thường gặp 2 2 2 Vẽ mặt ellipsoid x y z 2 2 1 2 a b c §0. Một số mặt bậc hai thường gặp x2+z2=1, y=0 y2+z2=1,x=0 x2+y2=1,z=0 x2 z2 Có thể vẽ thêm đường ellipse 2 2 1 a c trên mặt phẳng y = 0 §0. Một số mặt bậc hai thường gặp II. Mặt Paraboloid Elliptic: x2 y2 1. Phương trình : z a2 b2 2. Cách gọi tên mặt: Với phương trình trên, ta cho x = 0, y = 0 thì được 2 giao tuyến với 2 mặt tọa độ là 2 đường Parabol và cho z=c, c>0 ta được đường còn lại là 1 đường Ellipse. Tức là nếu 2 trong 3 giao tuyến với các mặt tọa độ hoặc các mặt song