Concrete is an inherently brittle material with a relatively low tensile strength compared to compressive strength. Reinforcement with randomly distributed short fibres presents an effective approach to the stabilization of the crack and improving the ductility and tensile strength of concrete. A variety of fibre types, including steel, synthetics, and natural fibres, have been applied to concrete. Polypropylene (PP) fibre reinforcement is considered to be an effective method for improving the shrinkage cracking characteristics, toughness, and impact resistance of concrete materials. Also, the use of PP fibre has been recommended by all of the researchers to reduce and eliminate the risk of the explosive spalling in high strength concrete at elevated temperatures. In this study, constitutive relationships are developed for normal and high-strength PP fibre reinforcement concrete (PPFRC) subjected to high temperatures to provide efficient modelling and specify the fire-performance criteria for concrete structures. They are developed for unconfined PPFRC specimens that include compressive and tensile strengths, elastic modulus, modulus of rupture, strain at peak stress as well as compressive stress–strain relationships at elevated temperatures. The proposed relationships at elevated temperature are compared with experimental results. These results are used to establish more accurate and general compressive stress–strain relationships prediction. Further experimental results for tension and the other main parameters at elevated temperature are needed in order to establish well-founded models and to improve the proposed constitutive relationships, which are general, rational, and fit well with the experimental results. | High strength Polypropylene fibre reinforcement concrete at high temperature