Changes in microstructures and physical properties of polymer-modified mortars during wet storage

The decrease in strength of tile adhesive mortars during wet storage was investigated. In a first approach, the water resistance of the polymer phases was tested on structures isolated from the mortar and in situ. It was observed that cellulose ether and polyvinyl alcohol structures are water-soluble. Subsequent investigations on polymer mobility within the mortar showed that the migrating pore water transports cellulose ether and polyvinyl alcohol during periods of water intrusion and drying. This leads to enrichments at the mortar – substrate interface. In contrast, latices interacting with the cement are water-resistant, and therefore, immobile in the mortar. Further experiments revealed that the mortar underwent considerable volume changes depending on the storage condition. Cracking occurred mainly close to the mortar –tile interface, cement hydrates grew within these shrinkage or expansion cracks. Test results revealed that the strength decrease of wet stored tile adhesives is caused by different mechanisms related to cement hydration, volume changes of the mortar, and reversible swelling of latex films. | Changes in microstructures and physical properties of polymer-modified mortars during wet storage

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.