Bài viết này đề cập mối quan hệ giữa Hình học không gian (HHKG) và Phương pháp tọa độ (PPTĐ) trong không gian, đồng thời nêu lên một số phương pháp giải bài toán HHKG bằng PPTĐ. | Một số phương pháp chọn hệ trục tọa độ trong việc giải bài toán hình học không gian bằng phương pháp tọa độ Tạp chí KHOA HỌC ĐHSP TP. HCM Số 16 năm 2009 MỘT SỐ PHƯƠNG PHÁP CHỌN HỆ TRỤC TỌA ĐỘ TRONG VIỆC GIẢI BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG PHƯƠNG PHÁP TỌA ĐỘ Nguyễn Viết Dũng* Bài viết này đề cập mối quan hệ giữa Hình học không gian (HHKG) và Phương pháp tọa độ (PPTĐ) trong không gian, đồng thời nêu lên một số phương pháp giải bài toán HHKG bằng PPTĐ. Một trong những mục tiêu của dạy học môn HHKG là rèn luyện kỹ năng phân tích và tổng hợp, rèn luyện tư duy logic. Vẻ đẹp của toán học thường được kết tinh trong những bài toán HHKG. HHKG và Hình học tọa độ quan hệ mật thiết với nhau. Nhiều bài toán khó của HHKG nếu sử dụng PPTĐ thì lời giải được thực hiện dễ dàng hơn, nhanh hơn, gọn hơn, trong khi giải trực tiếp bằng lý thuyết HHKG thuần túy thì rất phức tạp, đòi hỏi phải có kỹ năng vẽ hình, có khả năng phân tích, tổng hợp và tư duy logic để vẽ thêm đường phụ Trong cấu trúc đề thi tốt nghiệp THPT và tuyển sinh đại học, cao đẳng theo chương trình sách giáo khoa mới, các đề bài HHKG thường có hai ý: ý thứ nhất chỉ đòi hỏi kiến thức cơ bản về HHKG để tính thể tích, diện tích, chứng minh hay tính toán một yếu tố không phức tạp; ý thứ hai đòi hỏi khả năng phân tích, tổng hợp và thường phải vẽ thêm đường phụ mới giải quyết được. Qua nghiên cứu chất lượng các kỳ thi tốt nghiệp THPT theo chương trình phân ban thí điểm và tuyển sinh đại học, cao đẳng trong những năm qua, nhận thấy rằng tỷ lệ học sinh giải được bài HHKG đạt rất thấp, số làm được thì thì chủ yếu là giải quyết được một phần. Điều này có nhiều nguyên nhân, song có thể thấy rằng do kết cấu chương trình môn hình học ở lớp 12 còn mang nặng tính độc lập, sự phối hợp chưa rõ ràng. Chương trình hình học lớp 12 khá nặng, tiếp nối phần HHKG là PPTĐ trong không gian với khối lượng kiến thức phải giải quyết rất nhiều và nặng nề. Trong phần Phương pháp tọa độ trong .