Trong những năm gần đây, diễn biến về lượng mưa trên các lưu vực là một trong những vấn đề cần được quan tâm và nghiên cứu, đặc biệt là những vấn đề liên quan đến lượng mưa vụ (LMV) phục vụ cho việc việc lập kế hoạch tưới nhằm nâng cao hiệu quả quản lý vận hành các hệ thống thủy lợi. Do sự thay đổi LMV có ảnh hưởng trực tiếp đến chế độ tưới và nguồn nước, đó là tài liệu cơ bản trong việc lập kế hoạch tưới của các hệ thống thủy lợi, câu hỏi được đặt ra là liệu những thay đổi về LMV có thể được dự báo với độ chính xác ở mức có thể chấp nhận được hay không. Trong bài viết này, mô hình ANFIS (adaptive neuro-fuzzy inference system) đã được đề xuất để xây dựng mô hình dự báo LMV cho lưu vực sông Cả. Số liệu dùng cho tính toán được lấy ở 4 trạm khí tượng đại diện trên lưu vực sông Cả từ năm 1975 đến 2014. Các mô hình dự báo LMV khác nhau đã được xây dựng với các tham số lượng mưa đầu vào khác nhau, kết quả dự báo của các mô hình này được so sánh thông qua các thông số thống kê để xác định và đề xuất mô hình có kết quả dự báo tốt nhất. Kết quả cho thấy mô hình dự báo với các nhân tố dự báo là lượng mưa vụ của 5 năm liên tiếp trong quá khứ cho kết quả tốt nhất và đáng tin cậy nhất để dự báo lượng mưa vụ 3 tháng và 6 tháng cho khu vực nghiên cứu. | Nghiên cứu ứng dụng mô hình ANFIS dự báo lượng mưa vụ phục vụ cho việc lập kế hoạch tưới trên lưu vực sông Cả BÀI BÁO KHOA H C NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH ANFIS DỰ BÁO LƯỢNG MƯA VỤ PHỤC VỤ CHO VIỆC LẬP KẾ HOẠCH TƯỚI TRÊN LƯU VỰC SÔNG CẢ Nguyễn Lương Bằng1 Tóm tắt: Trong những năm gần đây, diễn biến về lượng mưa trên các lưu vực là một trong những vấn đề cần được quan tâm và nghiên cứu, đặc biệt là những vấn đề liên quan đến lượng mưa vụ (LMV) phục vụ cho việc việc lập kế hoạch tưới nhằm nâng cao hiệu quả quản lý vận hành các hệ thống thủy lợi. Do sự thay đổi LMV có ảnh hưởng trực tiếp đến chế độ tưới và nguồn nước, đó là tài liệu cơ bản trong việc lập kế hoạch tưới của các hệ thống thủy lợi, câu hỏi được đặt ra là liệu những thay đổi về LMV có thể được dự báo với độ chính xác ở mức có thể chấp nhận được hay không. Trong bài viết này, mô hình ANFIS (adaptive neuro-fuzzy inference system) đã được đề xuất để xây dựng mô hình dự báo LMV cho lưu vực sông Cả. Số liệu dùng cho tính toán được lấy ở 4 trạm khí tượng đại diện trên lưu vực sông Cả từ năm 1975 đến 2014. Các mô hình dự báo LMV khác nhau đã được xây dựng với các tham số lượng mưa đầu vào khác nhau, kết quả dự báo của các mô hình này được so sánh thông qua các thông số thống kê để xác định và đề xuất mô hình có kết quả dự báo tốt nhất. Kết quả cho thấy mô hình dự báo với các nhân tố dự báo là lượng mưa vụ của 5 năm liên tiếp trong quá khứ cho kết quả tốt nhất và đáng tin cậy nhất để dự báo lượng mưa vụ 3 tháng và 6 tháng cho khu vực nghiên cứu. Từ khóa: Lượng mưa vụ, Lưu vực sông Cả, Mô hình ANFIS. 1. ĐẶT VẤN ĐỀ1 vì quá trình khí quyển là rất phức tạp. Trong kỹ Lượng mưa vụ là hiện tượng ngẫu nhiên trong thuật dự báo, cụ thể là các phương pháp thống tự nhiên do hoàn lưu khí quyển và đại dương gây kê như ARIMA (autoregressive integrated ra. Lượng mưa vụ (LMV) là nguồn cung cấp nước moving average), mô hình hồi quy, và các chính, là tài liệu cơ bản để xác định chế .