Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2012-2013 - Sở GD&ĐT Quảng Bình

Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2012-2013 - Sở GD&ĐT Quảng Bình dành cho các bạn học sinh lớp 9 đang chuẩn bị thi học sinh giỏi giúp các em củng cố kiến thức, làm quen với cấu trúc đề thi, đồng thời giúp các em phát triển tư duy, rèn luyện kỹ năng giải đề chính xác. Chúc các bạn đạt được điểm cao trong kì thi này nhé. | Đề thi chọn HSG cấp tỉnh môn Toán 9 năm 2012-2013 - Sở GD&ĐT Quảng Bình SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI CHỌN HỌC SINH GIỎI TỈNH QUẢNG BÌNH LỚP 9 THCS NĂM HỌC 2012 – 2013 Môn thi: Toán ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề) (Đề thi gồm có 01 trang) x x 26 x 19 2 x x 3 Câu 1:( điểm) Cho biểu thức: P x 2 x 3 x 1 x 3 a) Rút gọn P. b) Tìm x để P đạt giá trị nhỏ nhất. Câu 2:( điểm) Cho phương trình x 2 2mx m 4 0 a) Tìm m để phương trình có hai nghiệm phân biệt x1 , x2 thỏa mãn x13 x23 26 m b) Tìm m nguyên để phương trình có hai nghiệm nguyên. Câu 3:(3,5 điểm) Cho tam giác ABC đều cố định nội tiếp trong đường tròn (O). Đường thẳng d thay đổi nhưng luôn đi qua A và cắt cung nhỏ AB tại điểm thứ hai là E ( E A ). Đường thẳng d cắt hai tiếp tuyến tại B và C của đường tròn (O) lần lượt tại M và N; MC cắt BN tại F. Chứng minh rằng: a) Tam giác CAN đồng dạng với tam giác BMA, tam giác MBC đồng dạng với tam giác BCN. b) Tứ giác BMEF là tứ giác nội tiếp. c) Chứng minh đường thẳng EF luôn đi qua một điểm cố định khi d thay đổi nhưng luôn đi qua A. Câu 4:(1,5 điểm) Cho các số thực dương a, b, c thỏa mãn a + b + c =6. Chứng minh rằng: b c 5 c a 4 a b 3 6 . 1 a 2 b 3 c Dấu "=" xảy ra khi nào? Câu 5:(1,0 điểm) Cho n là số tự nhiên lớn hơn 1. Chứng minh rằng n 4 4n là hợp số. ----------------- HẾT------------------- Họ và tên thí sinh: . ; Số báo danh: ; Phòng thi số: Thí sinh không được sử dụng tài liệu và máy tính cầm tay. Giám thị không giải thích gì thêm.

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.