Environmental pollution by petroleum hydrocarbons (PHCs) is a severe and widespread problem impacting human health and the environment. To combat this issue, innovative and sustainable treatment methods are required. This research study investigated rhamnolipid-enhanced washing of drill cuttings and petroleum-contaminated soil obtained from northeastern British Columbia in Canada. The efficiency of PHC reduction was analysed and quantified via a Gas Chromatography equipped with a Flame Ionization Detector. Optimum washing conditions for both drill cuttings and petroleum-contaminated soil were temperature of C (room temperature), rhamnolipid concentration of 500 mg/L, and a washing time of 30 min. The optimum stirring speed and solution-to-sample ratio for drill cuttings and petroleum-contaminated soil were 100 rpm; 1:1, and 200 rpm; 4:1 respectively. The maximum PHC reduction recorded for total petroleum hydrocarbon and PHC fractions – F2, F3 and F4 were , , and respectively for drill cuttings and , , and respectively for petroleum-contaminated soil. The results strongly suggest that soil washing is an effective step in the reduction of PHC and can be used as a first step in the treatment of drill cuttings and petroleumcontaminated soils. | Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils