Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

In conventional diffusion tensor imaging (DTI) based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results. | Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.