Trên đây là “Phương pháp tìm nhiều cách giải của một bài toán” đã vận dụng trong quá trình giảng dạy và kết quả đạt được cũng tương đối khả quan, giúp học sinh say mê, hứng thú, chịu khó nghiên cứu tìm tòi nhiều cách giải hay của một bài toán. | SKKN: Phương pháp tìm nhiều cách giải của một bài toán Sáng kiến PHƯƠNG PHÁP TÌM NHIỀU CÁCH GIẢI CỦA MỘT BÀI TOÁN I/ ĐẶT VẤN ĐỀ Trong quá trình dạy toán nói chung và bồi dưỡng học sinh giỏi nói riêng, mỗi giáo viên phải luôn cố gắng phấn đấu không ngừng tìm tòi nghiên cứu tìm ra những phương pháp giảng dạy mới nhất, hiệu quả nhất. Hướng dẫn giảng dạy như thế nào để phát huy được tư duy sáng tạo một cách tích cực và linh hoạt của học sinh, huy động thích hợp các kiến thức và khả năng đã có vào các tình huống khác nhau, không chỉ dừng lại một cách giải ở một bài toán mà phải có nhiều cách giải và có càng nhiều thì càng khắc sâu được kiến thức cho các em, giúp các em hiểu được mình đã tự làm chủ kiến thức toán học, biến những kiến thức thầy cô dạy thành những kiến thức của mình. Qua thực tế giảng dạy, tôi nhận thấy: - Thường trong hướng dẫn giải các bài toán giáo viên mới chỉ dừng lại ở 1 hay 2 cách giải và chưa khuyến khích học sinh gợi ra cách giảI hay. - Mặt khác học sinh không tích cực tư duy sáng tạo để tìm nhiều cách giải khác nhau, từ đó tìm ra con đừơng ngắn nhất, cách giải hay nhất. - Khi trình bày bài giải, học sinh hay dập khuôn máy móc. Chính vì vậy khi gặp dạng toán khác học sinh có thể không giảI được. Với những suy nghĩ đó cùng với thực tế giảng dạy, tôi thấy rằng : Phương pháp tìm nhiều cách giải của một bài toán là việc làm hết sức quan trọng giúp nâng cao chất lượng của học sinh. II/ GIẢI QUYẾT VẤN ĐỀ Đứng trước một bài toán học sinh có thể chỉ tìm ra một cách giải theo mẫu nội dung của ngày học hôm đó. Giáo viên phải hướng dẫn học sinh nhiều cách tư duy đối với một bài toán, dạng toán giúp các em biết vận dụng linh hoạt những kiến thức đã học, biết phân tích, tổng hợp sáng tạo một vấn đề theo chiều hướng khác nhau. Từ đó các em sẽ thấy hứng thú học toán hơn và thấy rằng học toán thật không khô khan chút nào. Ví dụ 1: Cho bài toán: .