Estimation and comparison of support vector regression with least square method

Regression is one among the most used vital machine learning and statistical tool. Regression is a method of modeling a target value based on independent predictors. It allows making predictions from data by understanding the relationship between features of data and observed continuous-valued response. Support Vector Regression (SVR) is one of the useful and flexible techniques, helping the user to deal with the limitations pertaining to distributional properties of underlying variables, the geometry of the data and the common problem of model overfitting. In this paper an attempt has been made to establish the significance of SVR through the numerical study. A 34 years of Metrological data is used here to compare Support Vector Regression with Least Square Regression. Based on the numerical study SVR model is identified as best fit by using Relative Mean Square Error (RMSE). | Estimation and comparison of support vector regression with least square method

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.