Tính nửa liên tuc trên của ánh xạ nghiệm cho bài toán cân bằng véctơ hai mức yếu phụ thuộc tham số

Bài viết trình bày việc xem xét bài toán cân bằng hai mức yếu véctơ phụ thuộc tham số. Bài viết thiết lập các điều kiện đủ cho tính nửa liên tục trên, tính nửa liên tục trên Hausdorff và tính đóng cho ánh xạ nghiệm của bài toán này. | Tính nửa liên tuc trên của ánh xạ nghiệm cho bài toán cân bằng véctơ hai mức yếu phụ thuộc tham số TẠP CHÍ KHOA HỌC HO CHI MINH CITY UNIVERSITY OF EDUCATION TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH JOURNAL OF SCIENCE Tập 16, Số 12 (2019): 993-1000 Vol. 16, No. 12 (2019): 993-1000 ISSN: 1859-3100 Website: Bài báo nghiên cứu* TÍNH NỬA LIÊN TỤC TRÊN CỦA ÁNH XẠ NGHIỆM CHO BÀI TOÁN CÂN BẰNG VÉCTƠ HAI MỨC YẾU PHỤ THUỘC THAM SỐ Nguyễn Văn Hưng1*, Ngô Thị Hoài An2 1 Học viện Công nghệ Bưu chính Viễn thông Thành phố Hồ Chí Minh 2 Trường Đại học Bách khoa – ĐHQG TPHCM * Tác giả liên hệ: Nguyễn Văn Hưng – Email: nvhung@ Ngày nhận bài: 24-10-2019; ngày nhận bài sửa: 18-11-2019; ngày duyệt đăng: 22-11-2019 TÓM TẮT Trong bài báo này, chúng tôi xét bài toán cân bằng hai mức yếu véctơ phụ thuộc tham số. Chúng tôi thiết lập các điều kiện đủ cho tính nửa liên tục trên, tính nửa liên tục trên Hausdorff và tính đóng cho ánh xạ nghiệm của bài toán này. Kết quả nhận được của chúng tôi, Định lí và Định lí là mới. Nhiều ví dụ minh họa cho các giả thiết của của chúng tôi đưa ra là cần thiết. Từ khóa: bài toán cân bằng hai mức; tính nửa liên tục trên; tính nửa liên tục trên Hausdorff; tính đóng 1. Giới thiệu Tính chất ổn định nghiệm của bài toán liên quan đến tối ưu bao gồm tính nửa liên tục, liên tục, liên tục Holder và liên tục Lipschitz là một trong những chủ đề quan trọng trong lí thuyết tối ưu và ứng dụng. Trong những thập kỉ gần đây, đã có nhiều công trình nghiên cứu về điều kiện ổn định nghiệm cho những bài toán liên quan đến tối ưu như bài toán tối ưu (Bui, 2005), bất đẳng thức biến phân (Nguyen, 2018; Lalitha & Bhatia, 2011), bài toán cân bằng (Lam, & Nguyen, 2018 a, b). Chúng ta biết rằng tính ổn định nghiệm theo nghĩa nào thì dữ liệu bài toán cũng thường phải giả thiết theo nghĩa đó. Trong thực tế, có nhiều bài toán mà các giả thiết chặt quá về dữ liệu .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.