Bài viết giới thiệu một kỹ thuật học máy có giám sát để xây dựng một cây quyết định cho hệ thống tuyển sinh của Trường đại học Hải Phòng. Mục tiêu chính là nhằm xây dựng được một mô hình phân loại hiệu quả với khả năng hạn chế lỗi cao và mức chính xác tương đối để cải thiện hiệu suất và hiệu quả của quá trình tuyển sinh. | Mô hình phân loại sử dụng cây quyết định áp dụng cho hệ thống tuyển sinh của trường đại học MÔ HÌNH PHÂN LOẠI SỬ DỤNG CÂY QUYẾT ĐỊNH ÁP DỤNG CHO HỆ THỐNG TUYỂN SINH CỦA TRƯỜNG ĐẠI HỌC Đào Việt Anh Khoa Công nghệ thông tin Email: anhdv@ Ngày nhận bài: 09/11/2018 Ngày PB đánh giá: 27/01/2019 Ngày duyệt đăng: 08/02/2019 TÓM TẮT Trong bài báo này, chúng tôi giới thiệu một kỹ thuật học máy có giám sát để xây dựng một cây quyết định cho hệ thống tuyển sinh của Trường đại học Hải Phòng. Mục tiêu chính là nhằm xây dựng được một mô hình phân loại hiệu quả với khả năng hạn chế lỗi cao và mức chính xác tương đối để cải thiện hiệu suất và hiệu quả của quá trình tuyển sinh. Điều này có nghĩa rằng công cụ lọc đã cải thiện hiệu suất và hiệu quả của quá trình tuyển sinh. Công cụ phân loại có chức năng lọc các ứng viên ở mức ban đầu để nhân viên tuyển sinh có thể tập trung vào các ứng viên triển vọng cao hơn nhằm đưa ra một lựa chọn tốt hơn. Vì vậy, khối lượng công việc của nhân viên hành chính được giảm bớt đi nhiều nên họ có thể thực hiện công việc lựa chọn tốt hơn. Từ khóa: Khai phá dữ liệu, cây quyết định, đánh giá mô hình, học máy có giám sát, hệ thống tuyển sinh của trường đại học. A DECISION TREE CLASSIFICATION MODEL FOR UNIVERSITY ADMISSION SYSTEM ABSTRACT This paper aims at introducing a supervised learning technique of building a decision tree for HaiPhong University admission system. The main object is to build an efficient classification model with high recall under moderate precision to improve the system. We used ID3 algorithm for decision tree construction. The final model is evaluated using the common evaluation methods. This means that the filtering tool has improved the efficiency and effectiveness of the admission process. The sorting tool has the ability to filter candidates at the initial level so that recruiters can focus on higher prospects in order to make a better choice.