Bài giảng Cấu trúc dữ liệu và giải thuật trong C++ - Bài 12: Các thuật toán sắp xếp nhanh O(nlogn)

Bài giảng "Cấu trúc dữ liệu và giải thuật trong C++ - Bài 12: Các thuật toán sắp xếp nhanh O(nlogn)" cung cấp cho người học các kiến thức: Sắp xếp nhanh – Quick sort; sắp xếp trộn - Merge sort; vun đống – Heap sort. . | Bài giảng Cấu trúc dữ liệu và giải thuật trong C++ - Bài 12: Các thuật toán sắp xếp nhanh O(nlogn) Bài 12. Các thuật toán sắp xếp nhanh O(nlogn) Sắp xếp nhanh – Quick sort Sắp xếp trộn - Merge sort Vun đống – Heap sort Sorting 1 Chia và trị - Divide and conquer Chia và trị là phương pháp thiết kế thuật toán theo kiểu: Phân chia: Chia dữ liệu đầu vào S của bài toán thành 2 tập con rời nhau S1 và S2 Đệ qui: Giải bài toán với dữ liệu vào là các tập con S1 và S2 Trị: kết hợp các kết quả của S1 và S2 thành kết quả của S Trường hợp cơ sở cho thuật toán đệ qui ở đây là các bài toán có kích thước 0 hoặc 1 Sorting 2 Sắp xếp nhanh – Quick sort Ý tưởng (sử dụng phương pháp chia và trị): Thực hiện phân hoạch dãy S cần sắp thành 3 dãy S1, S2, S3. Trong đó: • S2 chỉ có một phần tử, tất cả các phần tử của dãy S3 đều > phần tử của dãy S2. • Tất cả các phần tử của dãy S1 đều ≤ phần tử của dãy S2 • Dãy S1, S3 có thể là rỗng Tiếp tục phân hoạch dãy S1 và S3 độc lập theo nguyên tắc trên đến khi dãy cần thực hiện phân hoạch chỉ có một phần tử thì dừng lại. Khi đó ta được dãy các phần tử được sắp. Sorting 3 Thuật toán sắp xếp Quick sort Từ ý tưởng của thuật toán, ta có thể dễ dàng xây dựng thuật toán sắp xếp dưới dạng đệ qui như sau: Algorithm QuickSort (array A, i, j ); Input: Dãy các phần tử A[i],,A[j] và hai số nguyên i, j Output: Dãy A[i],,A[j] được sắp. if i < j then Partition (A,i, j, k); //k lấy chỉ số của phần tử làm S2 Quicksort (A,i, k-1); Quicksort (A,k+1, j); Sorting 4 Ví dụ Sorting 5 Vấn đề đặt ra ở đây là phân hoạch dãy S như thế nào? Sorting 6 Thuật toán phân hoạch • Chọn một phần tử bất kỳ của dãy làm dãy S2 (phần 6 12 32 1 3 tử này được gọi là phần tử chốt - pivot). 6 3 32 1 12 • Thực hiện chuyển các phần tử có khóa ≤ phần 6 3 1 32 12 tử chốt về bên trái và các phần tử > phần tử chốt về bên phải, sau đó đặt phần tử chốt về đúng vị 1 3 6

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.