Setting up water-saving irrigation strategies is a major challenge farmer‟s face, in order to adapt to climate change and to improve water-use efficiency in crop productions. However, there is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of ground- water systems. To guide the allocation of water resources in the region, it is beneficial to ascertain the effects of changing the crop planting pattern on water saving and farmland water productivity for irrigation water management. Modelling crop evapotranspiration (ET) response to different planting scenarios irrigation water management in a subtropical climate plays significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. We evaluated the changes in water savings in irrigation water management projects and resources, the irrigation water productivity and the net income water productivity under different planting scenarios. Crop production can increase if irrigated areas are expanded or irrigation is intensified, but these may increase the rate of environmental degradation. Since climate change impacts on soil water balance will lead to changes of soil evaporation and plant transpiration, consequently, the crop growth period may shorten in the future impacting on water productivity. | Simulating crop evapotranspiration response under different planting scenarios for irrigation water management under climate change: A review