Choosing seeds for semi-supervised graph based clustering

Though clustering algorithms have long history, nowadays clustering topic still attracts a lot of attention because of the need of efficient data analysis tools in many applications such as social network, electronic commerce, GIS, etc. Recently, semi-supervised clustering, for example, semi-supervised K-Means, semi-supervised DBSCAN, semi-supervised graph-based clustering (SSGC) etc., which uses side information to boost the performance of clustering process, has received a great deal of attention. Generally, there are two forms of side information: seed form (labeled data) and constraint form (must-link, cannot-link).

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.