Lecture Signals, systems & inference – Lecture 7: Full modal solution, asymptotic stability, reachability and observability

The following will be discussed in this chapter: Modal solution of CT system ZIR, asymptotic stability of CT system, the DT case: linearization at an equilibrium, modal solution of driven DT system, underlying structure of LTI DT statespace system with L distinct modes, reachability and Observability,. | Lecture Signals, systems & inference – Lecture 7: Full modal solution, asymptotic stability, reachability and observability Full modal solution, asymptotic stability, reachability and observability , Spring 2018 Lec 7 1 Modal solution of CT system ZIR L X q(t) = ↵ i v i e>i t 1 with the weights {↵i }L 1 determined by the initial condition: L X q(0) = ↵i vi 1 2 Asymptotic stability of CT system In order to have q(t) ! 0 for all q(0) , we require {Re( i ) < 0}L 1 ., all eigenvalues (natural frequencies) in open left half plane 3 The DT case: linearization at an equilibrium e , x[n] = x¯ + x[n] ¯ + q[n] DT case: q[n] = q e , q[n + 1] = f (q[n], x[n]) # h @f i h @f i e + 1] ⇡ q[n e + q[n] e x[n] @q ¯ ¯ q,x @x ¯ ¯ q,x e for small perturbations q[n] e and x[n] from equilibrium 4 Modal solution of DT system ZIR Could parallel CT development, but let’s proceed di↵erently: 2 3 A1 0 0 ··· 0 6 0 A2 0 ··· 0 7 6 7 6 7 A[ v1 v2 · · · vL ] = [ v1 v2 · · · vL ] 6 7 6 . . 7 4 . . . 5 0 0 0 ··· AL or AV = V⇤ or A = V⇤V-1 or An = (V⇤V-1 ) · · · (V⇤V-1 ) = V⇤n V-1 5 q[n] = An q[0] = V⇤n V-1 q[0] | {z } 2 3 ↵1 6 7 6 ↵2 7 6 7 6 7 6 . 7 6 7 4 5 ↵L 2 3 n 1 0 0 ··· 0 2 3 6 ↵1 6 0 n 2 0 ··· 0 77 6 ↵2 7 so q[n] = [ v1 v2 · · · vL ] 6 6 76 7 6 7 7 6 7 4 . 5 4 . . . . . 5 n ↵L 0 0 0 ··· L L X n 6 = ↵i v i i 1 Asymptotic stability of DT system In order to have q[n] ! 0 for all q[0] , we require {|�i | < 1}L 1 ., all eigenvalues (natural frequencies) inside unit circle 7 An for increasing n 101 100 A1 = , A2 = 101 100 100 100 A3 = , A4 = . 100 0 8 An for increasing n n n A1 = n = () n An2 = 101 100 = A2 101 100 9 An for increasing n n n 100 n 201 200 A3 =

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
24    17    1    24-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.