Lecture Signals, systems & inference – Lecture 18: Power Spectral Density (PSD)

The following will be discussed in this chapter: iid signal x[n], uniform in []; extracting the portion of x(t) in a specified frequency band; questions (warm-up for Quiz 2!); periodograms (., a unit-intensity “white” process); periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem). | Lecture Signals, systems & inference – Lecture 18: Power Spectral Density (PSD) Power Spectral Density (PSD) , Spring 2018 Lec 18 1 iid signal x[n], uniform in [] 2 y[.] obtained by passing x[.] through resonant 2nd-order filter H(z), poles at ±{jπ/3} 3 Extracting the portion of x(t) in a specified frequency band x(t) H(jv) y(t) H(jv) ¢ ¢ 1 -v0 v0 4 Questions (warm-up for Quiz 2!) WSS process x[·] with Cxx [m] = ⇢ [m 1] + [m] + ⇢ [m + 1] . What is the largest magnitude ⇢ can have? WSS process x(·) with mean µx and PSD Sxx (j!). What is its FSD? Zero-mean WSS process x(·) with 1 Sxx (j!) = 1 + !2 2 and let y(t) = Z +x(t), where Z has zero mean, variance , and is uncorrelated with x(·). What are µy and Syy (j!)? 5 Periodograms (., a unit-intensity “white” process) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 v/(2p) v/(2p) v/(2p) v/(2p) M = 4, T = 50 M = 4, T = 200 4 4 3 CT case: XT (j!) $ x(t) 3 windowed to [ T, T ] 2 2 1 1 |XT (j!)|2 Periodogram = 0 0 2T 0 1 0 1 v/(2p) v/(2p) M = 16, T = 50 M = 16, T = 200 4 4 j⌦ DT case: XN (e ) $ x[n] windowed to [ N, N ] 3 3 2 2 |XN (ej⌦ )|2 1 Periodogram 1 6 = 0 0 2N + 1 Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 v/(2p) v/(2p) v/(2p) v/(2p) M = 4, T = 50 M = 4, T = 200 4 4 3 3 2 2 1 1 0 0 0 1 0 1 v/(2p) v/(2p) M 16, T 50 M 16, T 200 4 4 3 3 2 2 7 1 1 Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 v/(2p) v/(2p) v/(2p)

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.