Bài giảng Giải tích 2: Chương 3 - Trần Ngọc Diễm (Phần 2)

Phần 2 bài giảng "Giải tích 2 - Chương 3: Tích phân đường" cung cấp cho người học các kiến thức về "Tích phân đường loại 2" bao gồm: Định nghĩa, tính chất tích phân đường loại 2, cách tính tích phân đường loại 2, định lý Green, tích phân không phụ thuộc đường đi. . | Bài giảng Giải tích 2: Chương 3 - Trần Ngọc Diễm (Phần 2) TÍCH PHÂN ĐƯỜNG LOẠI 2 NỘI DUNG nghĩa tp đường loại 2 chất tp đường loại 2 tính tp đường loại 2 lý Green phân không phụ thuộc đường đi. ĐỊNH NGHĨA Trong mp Oxy, cho cung AB và 2 hàm số P(x,y), Q(x,y) xác định trên AB. Phân hoạch AB bởi các điểm {A0, A2, , An}, với A0 = A, An = B. Giả sử Ak = (xk, yk), k = 0, ,n. Gọi xk = xk+1 – xk , yk = yk+1 – yk, k = 0, , n-1. Trên cung AkAk+1, lấy điểm Mk, xét tổng tp This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. This image cannot currently be displayed. là tp đường loại 2 của P, Q trên AB This image cannot currently be displayed. Quy ước: chỉ tích phân trên chu tuyến (đường cong kín) C TÍNH CHẤT TP ĐƯỜNG LOẠI 2 đường loại 2 phụ thuộc vào chiều đường đi This image cannot currently be displayed. Đổi chiều đường đi thì tp đổi dấu. C = C1 C2 This image cannot currently be displayed. CÁCH TÍNH TP ĐƯỜNG LOẠI 2 Khi tham số hóa đường cong, lưu ý về chiều đường đi. TH1: (C) viết dạng tham số x = x(t), y = y(t), t1 :điểm đầu, t2: điểm cuối This image cannot currently be displayed. This image cannot currently be displayed. TH2: (C) viết dạng y = y(x), x = a : điểm đầu, x = b : điểm cuối This image cannot currently be displayed. This image cannot currently be displayed. TH3: (C) viết dạng x = x(y), y = c : điểm đầu, y = d : điểm cuối This image cannot currently be displayed. Nhắc lại Khi tham số hóa cho cung tròn, elippse, ngược chiều kim đồng hồ là tham số tăng dần, cùng .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.