Cùng tham khảo Đề thi HK 1 môn Toán lớp 12 năm 2019-2020 - THPT Chuyên Lê Hồng Phong, Nam Định sau đây để biết được cấu trúc đề thi cũng như những dạng bài chính được đưa ra trong đề thi. Từ đó, giúp các bạn học sinh có kế hoạch học tập và ôn thi hiệu quả. | Đề thi HK 1 môn Toán lớp 12 năm 2019-2020 - THPT Chuyên Lê Hồng Phong, Nam Định SỞ GIÁO DỤC & ĐÀO TẠO NAM ĐỊNH ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KỲ 1 TRƯỜNG CHUYÊN LÊ HỒNG PHONG NĂM HỌC 2019-2020 ĐỀ CHÍNH THỨC Môn: Toán 12 (Đề thi có 5 trang) Thời gian làm bài: 90 phút ————– ——————— Mã đề thi 184 Z1 Z1 Câu 1. Cho f (x) dx = 3. Tính tích phân I = (2f (x) − 1) dx. −2 −2 A. 3. B. −3. C. 5. D. −9. Câu 2. Tính diện tích hình phẳng giới hạn bởi parabol y = x2 − 2x và đường thẳng y = x. 17 11 27 9 A. . B. . C. . D. . 6 6 6 2 Câu 3. Một mặt cầu có diện tích 16π. Tính bán kính mặt cầu đó. √ √ A. 4. B. 4 2. C. 2 2. D. 2. Z4 Z2 Câu 4. Cho f (x) dx = 16. Tính f (2x) dx 0 0 A. 8. B. 16. C. 4. D. 32. Câu 5. Giải bất phương trình log2 (3x − 2) > log2 (6 − 5x) được tập nghiệm là (a ; b). Hãy tính tổng S = a + b. 28 8 31 11 A. S = . B. S = . C. S = . D. S = . 15 3 6 5 Z1 Z4 Z4 Câu 6. Cho f (x) dx = 1, f (x) dx = 3. Khi đó f (x) dx bằng 0 1 0 A. 2. B. 1. C. 3. D. 4. Câu 7. Cho hàm số y = f (x) liên tục trên [a; b], (a, b ∈ R, a < b). Gọi S là diện tích hình phẳng được giới hạn bởi các đường y = f (x); trục Ox; x = a; x = b. Phát biểu nào sau đây là đúng? Zb Za Zb Zb A. S = f (x) dx. B. S = |f (x)| dx. C. |f (x)| dx. D. S = f (x) dx. a b a a Câu 8. Cho hình chóp có SA, SB, SC đôi một vuông góc. Biết SA = SB = SC = a, thể tích của khối chóp bằng √ 3 a3 a3 a3 3a A. . B. . C. . D. . 2 6 3 4 Câu 9. Cho phương trình 31+x + 31−x = 10. Mệnh đề nào sau đây là mệnh đề đúng? A. Phương trình có hai nghiệm trái dấu. B. Phương trình có hai nghiệm dương. C. Phương trình có hai nghiệm cùng âm. D. Phương trình vô nghiệm. Ç åx−1 x−2 1 Câu 10. Tập nghiệm của bất phương trình 3 > là Ç å Ç å 9 Ç å 6 4 4 A. S = ; +∞ . B. S = ; +∞ . C. S = −∞; . D. S = (−∞; 0). 7 3 3 Trang 1/5 Mã đề 184 1 Câu 11. Cho log3 a = 2 và log2 b = . Tính giá trị của biểu thức I = 2log3 [log3 (3a)] + log 1