Nội dung của tài liệu trình bày tóm tắt lý thuyết và công thức hỗ trợ của hàm số như: quy tắc và công thức tính đạo hàm; dấu của tam thức bậc 2; tính đơn điệu của hàm số; tìm điều kiện tham số để hàm số đơn điệu; cực trị của hàm số; cực trị của hàm đa thức bậc ba; cực trị của hàm lượng giác; cực trị của hàm số chứa dấu giá trị tuyệt đố; giá trị lớn nhất - giá trị nhỏ nhất của hàm số. | Hàm số - Tóm tắt lý thuyết và công thức hỗ trợ fb: 1 HÀM SỐ TÓM TẮT LÝ THUYẾT VÀ CÔNG THỨC HỖ TRỢ Tiến Nhanh biên soạn và sưu tầm Bản demo soạn bằng LATEX 1. Nhắc lại kiến thức . Quy tắc và công thức tính đạo hàm. Cho u = u(x); v = (x); k là hằng số. • Tổng, hiệu: (u ± v)0 = u0 ± v0 • Tích: ()0 = u0 .v + • Thương: 0 u 0 u0 .v − k k = ; (v 6= 0) ⇒ =− 2 v v2 v v • Hàm hợp: Nếu y = y(u); u = u(x) ⇒ y0x = y0u .u0x . • Bảng công thức đạo hàm. Đạo hàm của hàm sơ cấp Đạo hàm của hàm hợp C0 = 0 (C là hằng số) (xα )0 = −1 (uα )0 = −1 .u0 0 0 0 1 1 1 u = − 2 , (x 6= 0) = − 2 , (u 6= 0) x x u u √ 0 1 √ 0 u0 ( x) = √ ( u) = √ 2 x 2 u 0 0 (sin x) = cos x (sin u) = u0 . cos u (cos x)0 = − sin x (cos u)0 = −u0 . sin u 1 u0 (tan x)0 = = tan2 x + 1 (tan u)0 = cos2 x cos2 u0 1 u (cot x)0 = − 2 = − cot2 x + 1 (cot u)0 = − 2 sin x sin u (ex )0 = ex (eu )0 = u0 .eu (ax )0 = ax .ln(a) (au )0 = u0 .au .ln(a) 1 u0 (ln |x|)0 = (ln |u|)0 = x u 0 1 0 u0 (loga |x|) = (loga |u|) = (a) (a) fb: 2 • Đạo hàm cấp 2: f 00 (x) = [ f 0 (x)]0 . Ý nghĩa: Gia tốc tức thời của chuyển động s = f (t) tại thời điểm to là a(to ) = f 00 (to ) • Công thức tính nhanh đạo hàm của hàm phân thức 0 2 0 (ae − bd).x2 + 2(a f − dc).x + (b f − ce) ax + b ad − bc ax + bx + c = ; = cx + d (cx + d)2 dx2 + ex + f (dx2 + ex + f )2 . Dấu của tam thức bậc 2. Cho tam thức bậc 2: y = ax2 + bx + c với a 6= 0. Ta cần nhớ các kết quả sau: 1. f (x) > 0, ∀x ∈ R khi và chỉ khi: a>0 ∆ 0, ∀x ∈ (α; +∞) khi và chỉ khi: a>0 a" > 0 ( ∆ ≥ 0 a>0 f (x) = 0 vô nghiệm ⇔ hoặc ∆ 0, ∀x ∈ (−∞; α) khi và chỉ khi: a>0 a" > 0 ( ∆ ≥ 0 a>0 f (x) = 0 vô nghiệm ⇔ hoặc ∆ f (x2 ). fb: