Drug-protein binding may play a role in the thermal energetics of protein denaturation and could lead to the determination of its equilibrium dissociation parameter. The aim of this study was to assess the energetics of a drug that was bound to human serum albumin (HSA) during thermal denaturation. Drugs that were bound at a single high-affinity primary binding site on HSA, including diazepam and ibuprofen, were employed. Commercial HSA was treated with charcoal to remove stabilizers and adjusted to 20% w/v in a pH buffered solution. Serial concentrations of individual drugs up to mmole/g-protein were added to the cleaned HSA solutions whereas diazepam was added to a commercial HSA solution. Samples were subjected to differential scanning calorimetry (DSC) set to run from 37 to 90°C at °C/min. Binding of the drug slightly increased the denaturing temperature of the cleaned HSA due to a shift in the equilibrium toward the native protein bound with the drug. Diazepam depressed the denaturing temperature of the commercial HSA by competing with the stabilizers already bound to the primary site of the HSA. | Nội dung Text Assessment of the dissociation energetics of some selected ligand drugs bound on human serum albumin by differential scanning calorimetry