Inorganic or inorganic-organic hybrid nanomaterials have great potential for applications in the biomedical fields. Biological half-life is an essential pharmacokinetic parameter for these materials to function in vivo. Compared to inductively coupled plasma mass spectrometry (ICP-MS), which is the gold standard, laser-induced breakdown spectroscopy (LIBS) is a faster and more efficient elemental detection method. We investigated an efficient way to quantify the metabolic rate using LIBS. Nanoparticle platforms, such as manganese dioxide-bovine serum albumin (MnO2-BSA) or boehmite-bovine serum albumin (AlO(OH)- BSA) were injected into mice through intravenous administration for LIBS spectrum acquisition. First, the spectral background was corrected using the polynomial fitting method; The spectral interference was eliminated by Lorentz fitting for each LIBS spectrum simultaneously. The support vector regression (SVR) was then used for LIBS quantitative analyses. | Half-life determination of inorganic-organic hybrid nanomaterials in mice using laser-induced breakdown spectroscopy