Heavy-tailed distributions and risk management of equity market tail events

Traditional econometric modelling typically follows the idea that market returns follow a normal distribution. However, the concept of tail risk indicates that the distribution of returns is not normal, but skewed and has heavy tails. Thus, a heavy-tailed distribution, which accurately estimates the tail risk, would significantly improve quantitative risk management practice. In this paper, we compare four widely used heavy-tailed distributions using the S&P 500 daily returns. Our results indicate that the Skewed t distribution in Hansen (1994) has the superior empirical performance compared with the Student’s t distribution, the normal reciprocal inverse Gaussian distribution and the generalized hyperbolic distribution. We further showed the Skewed t distribution could generate the VaR estimates closest to the nonparametric historical VaR estimates compared with other heavy-tailed distributions. | Heavy-tailed distributions and risk management of equity market tail events

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.