In this paper, the effects of the welding current in the WAAM process on the shape and the microstructure evolution of thin-walled low-carbon steel components were studied. For this purpose, the thin-walled low-carbon steel samples were built layer-by-layer on the substrates by using an industrial gas metal arc welding robot with different levels of the welding current. The shape, microstructures, and mechanical properties of the thin-walled samples were then analyzed. The obtained results show that the welding current plays an important role in the shape stability, but it insignificantly influences the microstructure evolution of thin-walled samples. The increase in the welding current only leads to a coarser grain size and decreases the hardness of each zone of the walls. The mechanical properties (. hardness and tensile properties) of the WAAM thin-walled low-carbon steel parts are also comparable to those of wrought low-carbon steel, and to be adequate with real applications. | Effects of welding current on the shape and microstructure evolution of thin-walled low-carbon parts built by wire arc additive manufacturing