New fractional-order shifted Gegenbauer moments for image analysis and recognition

Orthogonal moments are used to represent digital images with minimum redundancy. Orthogonal moments with fractional-orders show better capabilities in digital image analysis than integer-order moments. In this work, the authors present new fractional-order shifted Gegenbauer polynomials. These new polynomials are used to define a novel set of orthogonal fractional-order shifted Gegenbauer moments (FrSGMs). The proposed method is applied in gray-scale image analysis and recognition. The invariances to rotation, scaling and translation (RST), are achieved using invariant fractional-order geometric moments. Experiments are conducted to evaluate the proposed FrSGMs and compare with the classical orthogonal integer-order Gegenbauer moments (GMs) and the existing orthogonal fractional-order moments. The new FrSGMs outperformed GMs and the existing orthogonal fractional-order moments in terms of image recognition and reconstruction, RST invariance, and robustness to noise. |

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.