Đề thi chọn học sinh giỏi quốc gia môn Toán lớp 12 năm học 2009-2010 – Bộ Giáo dục và Đào tạo

"Đề thi chọn học sinh giỏi quốc gia môn Toán lớp 12 năm học 2009-2010 – Bộ Giáo dục và Đào tạo" là tài liệu tham khảo hữu ích cho các bạn học sinh chủ động củng cố, nâng cao kiến thức tại nhà. | BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA LỚP 12 THPT NĂM 2011 ĐỀ THI CHÍNH THỨC Môn TOÁN Thời gian 180 phút không kể thời gian giao đề Ngày thi thứ hai 12 01 2011 Bài 5 7 0 điểm . Cho dãy số nguyên an xác định bởi a0 1 a1 1 và an 6an 1 5an 2 với mọi n 2. Chứng minh rằng a2012 2010 chia hết cho 2011. Bài 6 7 0 điểm . Cho tam giác ABC không cân tại A và có các góc n ABC nACB là các góc nhọn. Xét một điểm D di động trên cạnh BC sao cho D không trùng với B C và hình chiếu vuông góc của A trên BC. Đường thẳng d vuông góc với BC tại D cắt các đường thẳng AB và AC tương ứng tại E và F. Gọi M N và P lần lượt là tâm đường tròn nội tiếp các tam giác AEF BDE và CDF. Chứng minh rằng bốn điểm A M N P cùng nằm trên một đường tròn khi và chỉ khi đường thẳng d đi qua tâm đường tròn nội tiếp tam giác ABC. Bài 7 6 0 điểm . Cho n là số nguyên dương. Chứng minh rằng đa thức P x y x n xy y n không thể viết được dưới dạng P x y G x y .H x y trong đó G x y và H x y là các đa thức với hệ số thực khác đa thức hằng. ----------------------------HẾT--------------------------- Thí sinh không được sử dụng tài liệu và máy tính cầm tay. Giám thị không giải thích gì thêm.

Bấm vào đây để xem trước nội dung
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
12    25    1    27-11-2024
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.