Anomaly detection system of web access using user behavior features

This leads to the need of monitoring the users accesses to these services to distinguish abnormal and malicious behaviors from the log data in order to ensure the quality of these web services as well as their safety. This work presents methods to build and develop a rule-based systems allowing services’ administrators to detect abnormal and malicious accesses to their web services from web logs. The proposed method investigates characteristics of user behaviors in the form of HTTP requests and extracts efficient features to precisely detect abnormal accesses. Furthermore, this report proposes a way to collect and build datasets for applying machine learning techniques to generate detection rules automatically. The anomaly detection system of was tested and evaluated its performance on 4 different web sites with approximately one million log lines per day |

Không thể tạo bản xem trước, hãy bấm tải xuống
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.