The soil cohesion and angle of internal friction depend greatly on the soil moisture. Specifically, soil with a lower moisture content has a higher shearing strength than that in soil with higher moisture content. The finite element modeling of moisture transfers in unsaturated soils through the relationship between soil moisture, soil suction, unsaturated permeability and soilmoisture dispersivity is capable of accurately predicting the wetting front development. The element sizes and time steps have been selected based on detailed analysis of analytical error estimation and on the numerical simulations with different element sizes numerical simulation errors. Soil samples had been taken then the soil different suctions and corresponding soil moisture values have been determined in the laboratory. T |