One of effective approaches to the study of long - time behavior of infinite dimensional dynamical systems is based on the concept of inertial manifolds which was introduced by C. Foias, G. Sell and R. Temam (see [4] and the references therein). These inertial manifolds are finite dimensional Lipschitz ones, attract trajectories at exponential rate. This enables us to reduce the study of infinite dimensional systems to a class of induced finite dimensional ordinary differential equations. In this paper, on the real separable Hilbert space , we study the existence of admissible inertial manifolds of the nonautonomous thermoelastic plate systems . |